
Applying Logistic Regression Model on HPX Parallel Loops
Zahra Khatami1,2, Lukas Troska1,2, Hartmut Kaiser1,2 and J. Ramanujam1

1Center for Computation and Technology, Louisiana State University
2The STE∣∣AR Group, http://stellar-group.org

Abstract—The performance of many parallel applications de-
pend on the loop-level parallelism. However, manually paralleliz-
ing all loops may result in degrading parallelization performance,
as some of the loops cannot scale desirably on more number of
threads. In addition, the overheads of manually setting chunk
sizes might avoid an application to reach its maximum parallel
performance. We illustrate how machine learning techniques
can be applied to address these challenges. In this research,
we develop a framework that is able to automatically capture
the static and dynamic information of a loop. Moreover, we
advocate a novel method for determining execution policy and
chunk size of a loop within an application by considering those
captured information implemented within our learning model.
Our evaluated execution results show that the proposed technique
can speed up the execution process up to 45%.

I. INTRODUCTION

Runtime information is often speculative, solely relying
on it doesn’t guarantee maximizing parallelization perfor-
mance, since the parallelization performance of an application
depends on both the values measured at runtime and the
related transformations performed at compile time. Collecting
outcome of the static analysis performed by the compiler could
significantly improve the runtime performance. These captured
information should be analyzed to optimize the application’s
parameters for achieving maximum parallelization. However,
manually tuning parameters becomes ineffective and almost
impossible when too many features are given to the program.
Hence, many researches have extensively studied machine
learning algorithms to optimize such parameters automatically.

For example in [1], nearest neighbors and support vector
machines are used for predicting unroll factors for different
nested loops based on the extracted static features. In [2],
clustering algorithm is implemented for examining different
benchmarks for their similarities to reduce the time needed
for evaluating other similar benchmarks and estimating their
performances. In [3], neural network and decision tree are ap-
plied on the training data collected from different observations
to predict the branch behavior in a new program.

Most of these existing optimization techniques require users
to compile their application twice, first compilation for ex-
tracting static information and the second one for recompiling
application based on those extracted data. Also, none of them
considers both static and dynamic information. The goal of
this research is to optimize an HPX performance by predicting
optimum execution policy and efficient chunk size for its
parallel algorithms by considering both static and dynamic
information and to develop a technique to avoid unnecessary
compilation. To the best of our knowledge, we present a
first attempt in implementing learning model for the loop
parameters prediction at runtime, in which designing these
runtime techniques and capturing learning models features are
automatically performed at compile time.

II. LEARNING ALGORITHM

A. Binary Logistic Regression Model

For predicting optimum execution policy (sequential or
parallel), we implement a binary logistic regression model
[4] for analyzing extracted information from a loop. The
wights parameters WT

= [ω0, ω1, ω2,] are determined
by considering features values xr(i) of each experiment
X(i) = [1, x1(i), x2(i), ...]

T for minimizing log-likelihood of
the Bernoulli distribution value µ(i) = 1/(1 + e−W

T x(i)
). The

values of ω are updated as follow:
ωk+1 = (XTSkX)−1XT (SkXωk + y − µk) (1)

In equation (1), S is a diagonal matrix with S(i, i) =
µ(i)(1 − µ(i)). The output is determined by considering
decision rule as follow:

y(x) = 1←→ p(y = 1∣x) > 0.5 (2)

B. Multinomial Logistic Regression Model

For predicting optimum chunk size, we implement a multi-
nomial logistic regression model [4] for analyzing extracted
information from a loop. The posterior probabilities are com-
puted by using softmax transformation of the feature variables
linear functions as follow:

ynk = yk(φn) =
exp(WT

h φ(Xn))
∑j exp(WT

j φ(Xn))
(3)

The cross entropy error function is defined as follow:
E(ω1, ω2, ..., ωk) = −∑

n
∑
k

tnklnynk (4)

, where T is a matrix of target variables with tnk elements.
The gradient of E is computed as follow:

∇ωjE(ω1, ω2, ..., ωk) =∑
n

(ynj − tnj)φ(xn) (5)

We use the Newton-Raphson for updating the weights values:
ωnew = ωold −H−1∇E(ω) (6)

, where H is the Hessian matrix defined as follow:

∇ωk∇ωjE(ω1, ω2, ..., ωk) =∑
n

ynk(Ikj − ynj)φ(xn)φT (xn) (7)

III. PROPOSED MODEL

In this section, we propose a new technique categorized as
follow for applying learning models described in section II.
A. Special Execution Policies and Parameter

We introduce new execution policy and parameter in HPX,
which applying them on the loops makes implementing learn-
ing model on those loops. par if is a new execution policy for
implementing binary logistic regression model for determin-
ing optimum execution policy. adaptive chunk size is a new
execution policy’s parameter for implementing multinomial
logistic regression model for choosing efficient chunk size.
Fig.1 shows two loops defined with these new execution policy
and parameter.

f o r e a c h (p a r i f , r an ge 1 . b e g i n () , r an g e1 . end () , lambda1) ;

f o r e a c h (p o l i c y . w i th (a d a p t i v e c h u n k s i z e) , r an g e2 . b e g i n () ,
r an ge 2 . end () , lambda2) ;

Figure 1: Before compilation.

static/dynamic Information
dynamic number of threads∗
dynamic number of iterations∗

static number of total operations∗
static number of float operations∗
static number of comparison operations∗
static deepest loop level∗
static number of integer variables
static number of float variables
static number of if statements
static number of if statements within inner loops
static number of function calls
static number of function calls within inner loops

Table I: Collected static and dynamic features.

B. Feature Extraction

We collect 10 static features at compile time and 2 dy-
namic features at runtime to determine a learning model
that are listed in Table I. Although it may not be the best
possible set, but it is very similar to those considered in
the other works [1], [5], in which their results proved that
set is sufficient to design a learning model. The first two
features are measured dynamically at runtime and the rest
of features are collected at compile time. For this purpose,
we introduce a new class named ForEachCallHandler in the
Clang compiler as shown in fig.2 that is intended to collect
static information at compile time for the loops that use
par if as their execution policy or adaptive chunk size as
their execution policy parameter. Each feature has a member
in that class and they are calculated for each detected loop.
These features are extracted from lambda function of the loop
by applying getBody() on a lambda operator getLambdaCal-
lOperator(). Then, the value of each of them are recorded by
passing lambda to analyze statement. Dynamic features are
also measured by implementing hpx::get os thread count()
and std::distance(range.begin(), range.end()).

For avoiding overfitting problem, we choose 5 critical
features marked with red∗ color in Table I by implementing
Principal Component Analysis Algorithm [4].
C. Learning Model Implementation

1) Implementing binary logistic regression model for deter-
mining efficient execution policy: A new function seq par is
proposed to pass the extracted features for the loops that use
par if as their execution policy. In this technique, the compiler
adds extra lines within a user’s code automatically as shown in
fig.3a that makes runtime to decide whether execute a loop se-
quentially or parallel based on the output of seq par from eq.2,
in which the output 0 results in executing loop sequentially and
the output 1 results in executing loop in parallel. The input of
this function includes the extracted static information that is
initialized during compilation. Number of threads and number
of iterations are also measured and included in that features

c l a s s F o r E a c h C a l l H a n d l e r : p u b l i c MatchFinde r : : Ma tchCa l lback{
v i r t u a l vo id run (c o n s t MatchF inde r : : Ma tchResu l t &R e s u l t){

. . .
c o n s t SourceManager *SM = R e s u l t . SourceManager ;
/ / C a p t u r i n g lambda f u n c t i o n from a loop
c o n s t CXXMethodDecl* l a m b d a c a l l o p =

lambda reco rd−>g e t L a m b d a C a l l O p e r a t o r () ;
Stmt * lambda body = l a m b d a c a l l o p−>getBody () ;
/ / C a p t u r i n g p o l i c y
SourceRange p o l i c y (c a l l −>ge tArg (0)−>ge tExprLoc () ,

c a l l −>ge tArg (1)−>ge tExprLoc () . g e t L o c W i t h O f f s e t (−2)) ;
s t d : : s t r i n g p o l i c y s t r i n g = Lexer : : g e t S o u r c e T e x t (

CharSourceRange : : ge tCharRange (p o l i c y) , *SM,
LangOpt ions ()) . s t r () ;

/ / D e t e r m i n i n g p o l i c y i f a c u r r e n t p o l i c y i s p a r i f
i f (p o l i c y s t r i n g . f i n d (” p a r i f ”) != s t r i n g : : npos){

/ / E x t r a c t i n g s t a t i c i n f o r m a t i o n from lambda f u n c t i o n
a n a l y z e s t a t e m e n t (lambda body) ;
p o l i c y d e t e r m i n a t i o n (c a l l , SM) ; }

/ / D e t e r m i n i n g chunk s i z e i f a c u r r e n t p o l i c y ’ s
p a r a m e t e r i s a d a p t i v e c h u n k s i z e

i f (p o l i c y s t r i n g . f i n d (” a d a p t i v e c h u n k s i z e ”) != s t r i n g : :
npos){

/ / E x t r a c t i n g s t a t i c i n f o r m a t i o n from lambda f u n c t i o n
a n a l y z e s t a t e m e n t (lambda body) ;
c h u n k s i z e d e t e r m i n a t i o n (c a l l , SM) ; }}}

Figure 2: The proposed ForEachCallHandler.

i f (s e q p a r ({ f0 , f1 , . . . f n }))
f o r e a c h (seq , r a ng e1 . b e g i n () , r a ng e1 . end () , lambda1) ;

e l s e
f o r e a c h (par , r a ng e1 . b e g i n () , r a ng e1 . end () , lambda1) ;

(a) After compilation

boo l s e q p a r (F &&f e a t u r e s){
r e t u r n p o l i c y c o s t s f n c (f e a t u r e s , w e i g h t s (” w e i g h t s . d a t ”)) ;}

(b) Determining execution policy at runtime.
Figure 3: The proposed seq par.

set at runtime. Fig.3b shows the policy determination approach
implemented within seq par for computing cost function by
considering features and weights.

2) Implementing multinomial logistic regression model
for determining efficient chunk size: A new function
chunk size determination is proposed to pass the extracted
features for a loop that uses adaptive chunk size as its exe-
cution policy’s parameter. In this technique, a Clang compiler
changes a user’s code automatically as shown in fig.4a that
makes runtime to choose an optimum chunk size by consider-
ing the output of chunk size determination from eq.3, that is
based on the chunk size candidate’s probability. In addition
to the extracted compile time static information, number
of threads and number of iterations are also automatically
measured and included in this function at runtime. Fig.4b
shows the chunk size determination approach implemented
within chunk size determination for computing cost function
by considering features and weights values.

f o r e a c h (p o l i c y . w i th (c h u n k s i z e d e t e r m i n a t i o n ({ f0 , f1 , . . . f n })
)) , r an ge 2 . b e g i n () , r an g e2 . end () , lambda2) ;

(a) After compilation

dynamic chunk s i ze c h u n k s i z e d e t e r m i n a t i o n (F &&f e a t u r e s){
r e t u r n c h u n k c o s t s f n c (f e a t u r e s , w e i g h t s (” w e i g h t s . d a t ”)) ;}

(b) Determining chunk size at runtime.
Figure 4: The proposed chunk size determination.

test loop ∗itr. ∗opr. ∗flt opr. ∗comp. opr. lvl policy chunk size

1 l1 10 400 200 101 2 par 0.001
l2 20 450 250 150 2 par 0.001
l3 20 502 250 103 2 par 0.001
l4 0.5 550 200 150 1 par 0.1

2 l1 150 350 101 0.5 2 par 0.001
l2 0.1 10050 5000 2505 3 seq 0.1
l3 0.1 25000 3010 1500 3 seq 0.1
l4 50 4000 200 100 1 par 0.01

3 l1 0.5 4504 250 150 2 par 0.01
l2 0.4 3502 200 100 1 par 0.01
l3 2 250 150 103 3 seq 0.1
l4 2.5 350 150 100 3 seq 0.1

4 l1 20 204 100 10 2 par 0.001
l2 30 400 150 10 2 par 0.001
l3 0.3 550 44 20 3 seq 0.1
l4 0.4 450 50 10 3 seq 0.1

5 l1 0.2 4502 150 101 3 par 0.01
l2 0.7 400 300 150 3 par 0.01
l3 0.3 302 20 14 2 par 0.01
l4 0.1 50 20 10 2 seq 1

Table II: Execution policy and chunk size determined by seq par and
chunk size determination implementation. The values of the fields marked
with ∗ are divided by 103 because of the limited space.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
techniques over different test cases with different characteris-
tics shown in Table II, using Clang 4.0.0 and HPX 0.9.99 and
on the test machine with two Intel Xeon E5-2630 processors,
each with 8 cores clocked at 2.4GHZ and 65GB.

1) seq par: This function is able to make runtime to
decide whether execute a loop sequentially or in parallel by
considering static and dynamic features of that loop. Fig.5a
shows the execution time for tests with 4 loops per each in
Table II by choosing seq or par as an execution policy of
all of its loops and implementing this proposed technique for
choosing execution policy of those loops. Their determined
final execution policies are included in Table II. Fig.5a illus-
trates that as the execution policy of all of the four loops
of the first test case is determined as par by implementing
this technique, due to the overhead of the policy costs fnc
cost function, manually setting their execution policy as par
resulted in having a better performance. However for the rest
of the test cases, it illustrates that execution policy seq is
determined for some of the loops that cannot scale desirably
on more number of threads, which results in outperforming
manually parallelized code by around 15% − 20%.

2) chunk size determination: This function is able to make
runtime to choose an efficient chunk size for a loop by con-
sidering static and dynamic features of that loop. It should be
noted that the multinomial logistic regression model requires
to know the chunk size candidates for choosing efficient one
among them, which are chosen to be 0.001, 0.01, 0.1, and 0.5
of the number of iteration of a loop in this research. Fig.5b
shows the execution time for tests with 4 loops per each in
Table II by setting chunk size of all of its loops to be one of the
candidates and determining efficient one using this proposed
technique. Their determined chunk size are included in the
last column of the Table II. The overall performance of these
cases show up to 45%, 32%, 37% and 58% improvement over
setting chunks to be 0.001, 0.01, 0.1, or 0.5 iterations.

(a) seq par perfromance evaluation.

(b) chunk size determination perfromance evaluation.
Figure 5: The execution time comparisons for tests with 4 loops per each.

V. CONCLUSION AND FUTURE WORKS

In this paper, we developed new techniques that are able
to implement the binary and multinomial logistic regression
model to determine an optimum execution policy and chunk
size for an HPX loop. These techniques are able to consider
both static and dynamic features of a loop and to implement
a learning technique at runtime to make an optimum decision
for its execution without requiring extra compilation. We
illustrated that the parallel performance of our test cases were
improved by around 15% − 45% using our proposed tech-
nique. These results proved that combining machine learning
technique, compiler and runtime methods helps in utilizing
maximum resource availability for optimizing HPX parallel
performance.

REFERENCES

[1] Mark Stephenson and Saman Amarasinghe. Predicting unroll factors
using supervised classification. In Code Generation and Optimization,
2005. CGO 2005. International Symposium on, pages 123–134. IEEE,
2005.

[2] Ajay Joshi, Aashish Phansalkar, Lieven Eeckhout, and Lizy Kurian John.
Measuring benchmark similarity using inherent program characteristics.
IEEE Transactions on Computers, 55(6):769–782, 2006.

[3] Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James
Martin, Michael Mozer, and Benjamin Zorn. Evidence-based static branch
prediction using machine learning. ACM Transactions on Programming
Languages and Systems (TOPLAS), 19(1):188–222, 1997.

[4] C Bishop. Pattern recognition and machine learning (information science
and statistics), 1st edn. 2006. corr. 2nd printing edn. Springer, New York,
2007.

[5] Keith D Cooper, Devika Subramanian, and Linda Torczon. Adaptive op-
timizing compilers for the 21st century. The Journal of Supercomputing,
23(1):7–22, 2001.

	Introduction
	Learning Algorithm
	Binary Logistic Regression Model
	Multinomial Logistic Regression Model

	Proposed Model
	Special Execution Policies and Parameter
	Feature Extraction
	Learning Model Implementation
	Implementing binary logistic regression model for determining efficient execution policy
	Implementing multinomial logistic regression model for determining efficient chunk size

	Experimental Results
	seq_par
	chunk_size_determination

	Conclusion and Future Works
	References

