
Using SYCL as an Implementation Framework for HPX.Compute
Marcin Copik

RWTH Aachen University, Aachen, Germany
mcopik@gmail.com

Hartmut Kaiser
Center for Computation and Technology,

Louisiana State University, Baton Rouge, USA

The STELLAR Group, Baton Rouge, USA
hpx-users@stellar.cct.lsu.edu http://stellar-group.org

hkaiser@cct.lsu.edu

ABSTRACT
The recent advancements in High Performance Computing and
ongoing research to reach Exascale has been heavily supported by
introducing dedicated massively parallel accelerators. Programmers
wishing to maximize utilization of current supercomputers are re-
quired to develop software which not only involves scaling across
multiple nodes but are capable of offloading data-parallel computa-
tion to dedicated hardware such as graphic processors. Introduction
of new types of hardware has been followed by developing new
languages, extensions, compilers and libraries. Unfortunately, none
of those solutions seem to be fully portable and independent from
specific vendor and type of hardware.
HPX.Compute, a programming model developed on top of HPX, a
C++ standards library for concurrency and parallelism, uses exist-
ing and proposed C++ language and library capabilities to support
various types of parallelism. It aims to provide a generic interface
allowing for writing code which is portable between hardware ar-
chitectures.
We have implemented a new backend for HPX.Compute based
on SYCL, a Khronos standard for single-source programming of
OpenCL devices in C++. We present how this runtime may be used
to target OpenCL devices through our C++ API. We have evaluated
performance of new implementation on graphic processors with
STREAM benchmark and compare results with existing CUDA-
based implementation.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Computer systems organization → Single instruc-
tion, multiple data; • Software and its engineering→ Language
types;

KEYWORDS
C++, HPX, SYCL, parallel programming, heterogeneous program-
ming, GPGPU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWOCL ’17, May 16-18, 2017, Toronto, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5214-7/17/05. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3078155.3078187

ACM Reference format:
Marcin Copik and Hartmut Kaiser. 2017. Using SYCL as an Implementation
Framework for HPX.Compute. In Proceedings of IWOCL ’17, Toronto, Canada,
May 16-18, 2017, 7 pages.
https://doi.org/http://dx.doi.org/10.1145/3078155.3078187

1 INTRODUCTION
In the last few years, HPC world has moved to more heterogeneous
architectures, exploiting hardware offering different types of paral-
lelism and enforcing specific programming models. It has become a
standard practice to offload computations to dedicated accelerators
and it is expected that importance of massively parallel processors
is going to increase. Up to now, we have not seen a standardized
approach in C++ which would allow for writing portable code for
heterogeneous systems.

HPX.Compute[6] is an attempt to solve this problem basing on
standard C++ language and library. Proposed extensions to paral-
lelism in C++17 has been implemented and extended to create a
system which not only allows to control data placement and execu-
tion through a standard-conforming C++ API but is also orthogonal
to compilers, libraries and vendor-specific extensions. The triple
target, allocator and executor define execution model suiting widely
different types of hardware. Compute is based on HPX[9], a paral-
lel runtime system for applications of any scale, exposing an API
conforming to C++ standard.

This paper presents an initial evaluation of SYCL[16] toolchain
as an implementation of HPX.Compute API. SYCL allows for single
source programming of OpenCL devices in C++, including graphic
processors. The increasing importance of data-parallel accelerators
makes it very important to properly support GPU programming in
C++.

We discuss similar attempts and competing solutions in sec 2.
The mapping between Compute and SYCL concepts is presented
in section 3 and we describe problems faced so far in section 4,
explaining possible workarounds and suggesting future extensions.
Section 5 presents performance evaluation and overheads analysis
on STREAM benchmark, followed by a summarization of results
and plans for future work in section 6.

2 TECHNOLOGIES
HPX.Compute implements a CUDA[12] backend for NVIDIA graphic
processors with compilers nvcc and LLVM-based gpucc[19]. Al-
though graphic cards offered by NVIDIA have gained huge popu-
larity in HPC applications, there have been approaches to develop
competing standards, with OpenCL as the most popular alternative

hpx-users@stellar.cct.lsu.edu
http://stellar-group.org
https://doi.org/http://dx.doi.org/10.1145/3078155.3078187
https://doi.org/http://dx.doi.org/10.1145/3078155.3078187

IWOCL ’17, May 16-18, 2017, Toronto, Canada Marcin Copik and Hartmut Kaiser

choice. The ability to support other vendors have been evaluated
so far with two novel standards: Heterogenous Computing(HC)[2],
an AMD initiative based on C++AMP[11], and SYCL. Our previ-
ous work[4] verified and compared those standards on OpenCL-
supported graphic cards but it is no longer possible due to removed
support for OpenCL devices in HCC[3], so far the only compiler
for HC.

Our work on STL algorithms may be compared with Boost’s
Compute[15], AMD Bolt[1] and NVIDIA Thrust[7], but none of
them define their API in terms of standard C++. Data allocation
and movement requires dedicated containers. In OpenCL-based ap-
proaches, such as Boost library, user-defined functions and lambda
expressions require specific approach because OpenCL compiler
generates device code on runtime from a textual kernel representa-
tion. The only other solution using C++17 execution policies are
parallel algorithms in ParalellSTL[17], a SYCL-based project which
also requires a non-standard data movement to device.

3 IMPLEMENTATION
This section gives an overview how a new backend implements
HPX.Compute facilities with SYCL. Fundamental concepts, assump-
tions, and full interfaces have been already fully described[6]; here
a short summary with simplified code samples are presented.

HPX.Compute expresses data and execution locality through
targets. It is an abstract concept representing a place in the system
for both data allocation and execution. A large and rich set of
hardware which may be represented as a target does not allow to
define detailed interface.

Our target for SYCL backend communicates with the device
through a sycl::queue. An immediate consequence is implicit
concurrency of separate targets referring to the same device. De-
vice selection is currently limited to providing an index of a device.
At least one SYCL device must be present in the system, otherwise
an exception is thrown. SYCL host device cannot be used due to re-
strictions created by current implementation of future, as explained
in details later.

Both CUDA and SYCL backends define two important functional-
ities in their target interface, presented in Listing 1. Synchronization
itself is a trivial call to underlying sycl::queue. Target synchro-
nization is not affected by tasks pushed to the device through other
targets which happen to refer to the same SYCL device and utilize
different queues; such behaviour is consistent with CUDA backend.
Future implementation in SYCL target is a more complex problem
and has been described in details in section 4.2.

// Blocks until target is ready
void synchronize ();
// Future is ready when all tasks allocated on target

have been finished
hpx::future <void > get_future () const;

Listing 1: A generic interface of target.

3.1 Data locality
HPX.Compute resolves the problem of standard-conforming data
allocation on a device by defining a proper allocator type. Compute

allocators used for CUDA or NUMA targets are quite straightfor-
ward due to already existing API representing allocated data as
pointers. SYCL can not be integrated within HPX.Compute trivially
because it is a runtime handling memory locality on its own. Buffers
are not physically tied to any device and runtime guarantees that
data is going to be present on a device before it executes a kernel
accessing this buffer. To minimize problems coming from building
a runtime on top of another runtime, we have decided to not inter-
fere with SYCL buffer management and we only keep a record of
a logical connection between target and data chunks allocated in
their runtime.

Construction and deconstruction of objects on graphic proces-
sors can not be performed efficientlywith std::allocator_traits.
This problem has been resolved by introducing bulk versions for
these two operations. When bulk versions are not available in an
allocator, traits can always use the default interface. A part of ex-
tended std::allocator_traits interface is presented in Listing 2.
First function is supposed to enqueue a kernel using placement
new to construct multiple objects, destroy is responsible for calling
destructor. Additional template parameter Name is used as a kernel
name.

template <typename Allocator >
struct allocator_traits
: std:: allocator_traits <Allocator >

{
template <typename Name , typename ... Ts>
static void bulk_con struct(Allocator & alloc , pointer p

, size_type count , Ts &&... vs);

template <typename Name >
static void bulk_destroy(Allocator & alloc , pointer p,

size_type count) noexcept;
}

Listing 2: Extensions to the C++ standard library allocator
model.

3.2 Execution
The third and final part of HPX.Compute model is executor, a con-
cept introduced and discussed for next revisions of C++ standard[8].
Executors define where and how tasks should be executed, imple-
menting the most efficient mapping of work to a specific type
of hardware. In HPX, an executor is required to implement only
async_execute functionality and other synchronous or bulk exe-
cution are callable through executor_traits but this approach is
not compatible with execution model of graphic processors. List-
ing 3 gives an example of basic SYCL executor interface. In our
implementation, Shape container should embed triples consisting
of iterator, offset and chunk size.

One of the problems with single source accelerator program-
ming in C++ is restrictions on functions executed on the device.
SYCL inherits restrictions from OpenCL and current specification
tends to be slightly more restrictive than CUDA where recursion,
function pointers or virtual functions are permitted. Those kinds
of limitations are not relevant for parallel algorithms but should be
taken into account for generic C++ programming of accelerators.
Many constraints are perfectly justified by hardware limitations,

Using SYCL as an Implementation Framework for HPX.Compute IWOCL ’17, May 16-18, 2017, Toronto, Canada

template <typename Allocator >
struct default_executor
: hpx:: parallel :: executor_tag

{
target target_;

template <typename Parameters , typename F, typename
Shape , typename ... Ts>

void bulk_launch(Parameters &&, F && f, Shape const&
shape , Ts &&... ts) const;

template <typename Parameters , typename F, typename
Shape , typename ... Ts>

std::vector <hpx::future <void >> bulk_async_execute(
Parameters &&, F && f, Shape const& shape , Ts
&&... ts) const;

};

Listing 3: Basic interface of SYCL dedicated executor.

but a prime example of constraint, which may not be necessary
and is very problematic, is marking functions as capable of run-
ning on a device. Other standards, such as CUDA or HC, define
new keywords or use attributes to help compilers determine which
function should be compiled to device code. Contrary to CUDA and
HC, SYCL does not require additional marking and in our opinion
it makes much easier to integrate accelerator programming into
C++ projects.

3.3 Algorithms
So far we we have evaluated few algorithms which are obvious
candidates for parallelization due to lack of synchronization and
dependencies: for_each, transform, copy. In HPX.Compute the
copy algorithm is the standard way of transferring data between
host and device. Internal implementation is specialized for iterators
representing data allocated with different backends to perform an
actual copy to the device.

An example of an algorithmwhich has been evaluated and tested
with CUDA, but it is not supported with SYCL backend, is for_-
loop[14], an index-based parallel loop. We believe it is a very useful
addition to existing STL algorithms because it allows to easily im-
plement code requiring random access to memory, ability to pass
multiple memory objects which do not have to be iterated in a
regular fashion or the knowledge of current loop index. Those re-
quirements can be found in many applications, e.g. stencil code
or linear algebra operations. The current implementation in HPX
requires transferring to device a complex structure implemented
with std::tuple, which is an obstacle as explained in section 4.4.
A tuple is required to encapsulate a sequence of user-defined loop
iterators. While it is technically possible to perform tuple decon-
struction in command group and reconstruct the object in kernel
scope, it would require a rather complicated, large and very static
conversion procedure which would have to be adapted to each
modification of for_loop implementation.

Another addition to algorithm interface are projections, sim-
ple unary functions performing transformations of data represented
by input iterators. The idea is similar to adaptive_iterator im-
plemented in Boost.Compute.

3.4 Device accessors
An important distinction between previous and new backends is
the way in which data is managed on the host side and accessed
on a device. Contrary to CUDA-based applications, where data
allocation functions return pointers which are valid addresses on a
device, SYCL introduces a concept of accessors created in command
group scope, before kernel execution. The memory model with
implicit movement and unspecified location of data could not be
implemented without the knowledge which buffers are going to be
read or modified in the kernel.

A lot of examples present device accessors in static environments
where executed kernel and accessed buffers are known a priori. It is
not the case for libraries such as parallel algorithms in HPX, where
data objects are encapsulated and executor interface is very generic.
Listing 4 presents the structure of objects representing device mem-
ory on the host side. An underlying SYCL buffer is extracted from
an iterator and a device accessor to this buffer is created in the
command group scope. A SYCL global_ptr, obtained from the
device accessor, serves the role of device iterator for an algorithm
execution. A specialization of iterator_traits for SYCL device
pointer type had to be implemented.

template <typename T>
struct target_ptr
{

sycl::buffer <T, 1> * ptr_;
std:: size_t pos_;

};

template <typename T>
struct compute_iterator
{

target_ptr <T> * ptr_;
};

Listing 4: HPX.Compute SYCL objects representing device
memory.

To complicate things even more, executor can expect more than
iterator passed for execution, using hpx::zip_iterator. As long
as the set of all possible input types is limited and rather small, it
is possible to implement a static conversion algorithm inside com-
mand group scope, which transforms host side input into similar
objects containing not buffers, but accessors. Another consequence
is that all functions executed inside kernel have to be generic and
not dependent on types used on the host. A similar problem has
been observed in other applications, such as the transformation of
expression tree with nodes referring to device data[13].

For dynamic problems structure of objects passed to kernel
should not be encoded in the executor. Iterator, function objects and
other types can expose API to perform an automatic transformation.
A visitor object would give access to procedure switching from a
buffer to an accessor.

4 ISSUES
This section describes featureswhichwewere not able to implement
with APIs provided by SYCL, we were not able to implement in a
standard-compliant way or we were not able to implement at all.
We believe that those issues are not HPX specific and may appear

IWOCL ’17, May 16-18, 2017, Toronto, Canada Marcin Copik and Hartmut Kaiser

in other programming models in HPC. Recommended changes may
help to express clearly what capabilities would make the integration
process as simple as possible or just possible.

4.1 Kernel naming
SYCL technical specification allows for two approaches in compiler
design: an integrated two-pass compiler generating both host and
device code or an offline device compiler. Our experience with
other technologies suggests that latter approach does not suffer
from problems such as a huge increase in compilation time and
a restriction on the whole project to use only the dedicated C++
compiler. However, it creates a previously unknown problem: host
compiler needs to know how to link kernel invokation in C++
application with device bytecode. So far the only known solution
for kernels represented as a lambda functions is to explicitly name
the kernel because tools already offered by standard C++ does not
allow for automatic name generation[18]. This responsibility has
to be shifted from library to the user and it becomes problematic as
soon as we consider STL algorithms which do not require passing
a user-define function.

To solve this problem, ParallelSTL uses named execution poli-
cies to pass kernel name for execution. We consider this solution
problematic for two reasons. Firstly, execution policy defines how
the algorithm can be executed and what dependencies may exist
between executions on separate data items. There is little logical
connection between execution policy and kernel name which seems
to be tied not even to underlying hardware target, but to a single
execution context on this hardware. Our further doubts are based
on the main goal of this project which is to provide a vendor inde-
pendent and standard conforming implementation. The new named
and already known parallel execution policies would represent
the same type of parallelized execution which would create unnec-
essary confusion. Thus, we have decided to find another solution
in HPX.Compute.

Our proposition for this problem is based on executor parameters,
an HPX extension to proposed executor concepts for next paral-
lelism update in C++ standard. They have been used so far to control
chunking in an OpenMP fashion or measure execution time. We
have defined a new type of parameter hpx::parallel::kernel_-
name as presented in Listing 5. In such scenario, the executor needs
to know only the type of passed parameters.

// uses default executor: par
hpx:: parallel :: for_each(
hpx:: parallel ::par.with(
hpx:: parallel :: kernel_name <class Name >()

),
...

);

Listing 5: Example presenting a parallel execution of for_-
each algorithm with a user-defined name.

Another example of kernel name appearing in standard inter-
faces is allocator defined in section 3.1. Allocators tend to be used
multiple times in STL containers for construction and deconstruc-
tion of objects and each single action requires enqueuing a SYCL
kernel.

Our experience suggests that the restriction of naming kernels
needs to be lifted for development of standard-compliant solutions
on top of SYCL.

4.2 Asynchronous communication
Asynchronous execution is a crucial component of HPX program-
ming model, allowing to hide latencies. It is realized by joining
events happening in the system with actions triggered by this event
and their immediate continuations. Execution model on graphic
processors is implicitly asynchronous and SYCL exposes that by
not blocking after enqueuing a command group. Although it is
possible to execute asynchronously on a device, there is no stan-
dard way of notifying host about device status. Continuation is
allowed only as defining a kernel executing after another kernel
through data dependencies in accessors. Restricting ourselves to
using functionalities provided only by SYCL would permit only one
implementation of hpx::future which is launching a new HPX
thread and waiting there until allocated tasks have finished.

We have resolved, at least partially, this issue by making use
of SYCL-OpenCL interoperability. Several SYCL types function as
wrappers around OpenCL objects and access methods are exposed.
Among those types is the command queue which is sufficient to
use OpenCL callback mechanism. Listing 6 presents the process of
adding a new callback triggered after finishing all tasks which are
already in a queue. Usage of boost::intrusive_ptr ensures that
future_data, state of hpx::future, is not destroyed prematurely
and callback can be always executed safely.

// future_data is a shared state of hpx:: future
cl::sycl::queue queue = ...;
future_data * ptr = ...;
cl_event marker;
clEnqueueMarkerWithWaitList(queue.get(), 0, nullptr , &

marker);
clSetEventCallback(marker , CL_COMPLETE ,
[](cl_event , cl_int , void * ptr) {
marker_callback(
static_cast <future_data *>(ptr)

);
},
ptr);

Listing 6: Adding a callback to sycl::queue. Please note that
the sample ignores error checking for OpenCL operations.
Pointer is not captured, but passed as a void pointer to allow
a conversion of lambda expression to function pointer.

This approach has drawbacks and we do not consider it to be a
final or model solution. We are aware that it relies on the quality
of OpenCL runtime and HPX may be hurt by additional overhead
when an implementation of callback mechanism is far from be-
ing perfect. After all, there is no guarantee that it is not limited
to launching a new thread and performing a blocking wait for
completion of OpenCL event. Section 5 includes a performance
comparison between synchronous and asynchronous execution in
the benchmark.

A hidden assumption made here is that OpenCL queue is always
available. This requirement is not fulfilled in a sycl::queue created
on the SYCL host device. Hence SYCL backend can not operate in

Using SYCL as an Implementation Framework for HPX.Compute IWOCL ’17, May 16-18, 2017, Toronto, Canada

systems where OpenCL devices are not available.
This limitation could be removed by extending host queues with a
mock OpenCL queue which implements only critical features such
as callbacks. However, we believe that in the long run, the best
solution is to extend SYCL queues with callbacks or futures.

4.3 Data transfers
We have not been able to find an efficient method of copying data
from a SYCL buffer to user-defined pointer in memory, given that
the user may be interested in accessing only part of the buffer.
Offset and size, two typical parameters of copy, can be emulated by
using ranged sub-buffers. Host accessor, a standard SYCL approach
for accessing a buffer or sub-buffer on the host, always creates
an intermediate copy in SYCL runtime. This trouble is avoided by
using map_allocator for buffer construction, but it simply moves
a temporary placement from SYCL runtime to pointer used by the
allocator which can not be changed.

Asynchronous transfers between host and device is another fea-
ture which is missing in SYCL, comparing to OpenCL. Overlapping
data movement and kernel execution have been advised by both
major vendors as an important optimization for applications where
performance is crucial and PCIe bandwidth may be a bottleneck.

Listing 7 presents a suggestion how copy functionalities could
be exposed in SYCL. Range-based access may be implemented in
buffer API, as presented in listing 8. Return type indicates a desired
property of asynchronous data movement and chaining transfers
with other events in the system. However, we are aware that it may
not possible to implement those features around OpenCL events.

// copy all contents of buffer
template <typename T, int N, typename OutIter >
sycl::event copy(const sycl::buffer <T,N>& src , OutIter

dest);

// copy range [begin , end) to buffer , fully replacing
its contents

template <typename InIter , T, int N>
sycl::event copy(InIter begin , InIter end , sycl::buffer <

T,N> & dest);

Listing 7: Data movement between a generic storage in
memory and SYCL buffer.

// write range to buffer starting at 'pos'
template <typename T, int N, typename InIter >
sycl::event sycl::buffer <T,N>:: write(
std:: size_t pos , InIter begin , InIter end

);

// read 'size' elements starting at 'pos'
template <typename T, int N, typename OutIter >
sycl::event sycl::buffer <T,N>:: read(
size_t pos , size_t size , OutIter dest

);

Listing 8: Data movement including user-defined size and
offset for accessing sycl::buffer.

4.4 Non-standard layout datatypes
SYCL restrictions on datatypes which may be transferred to a device
are quite strict when compared to other standards. Limiting permit-
ted types in buffers and objects captured in device lambda to C++11
standard layout prohibits from transferring std::tuple from host
to device code. All popular tuple implementations, including ones
from GNU libstdc++, libc++ or HPX, violate standard layout rules
by multiple inheritance with more than one parent class contain-
ing non-static member fields. Known methods of implementing a
standard-layout tuple are rather tricky and inefficient. Furthermore,
introducing a special version of the tuple may require modifying
existing implementation to not use std::tuple.

The tuple is a quite recurring problem in HPX but we can not
exclude similar problems appearing in future. We are planning
to solve this problem by explicitly performing a serialization be-
fore capturing objects in kernel scope. This solution is based on
implementing serialization and deserialization functionalities in
user-defined types. It is not an uncommon solution, current ver-
sion 1.2 of HCC resolves problem of non-standard layout datatypes
by adding serialization procedures during compilation. Then HC
runtime can safely assume that each object transferred to device is
serializable.

5 RESULTS
Our first implementation of SYCL backend has been evaluated
with the STREAM benchmark[10]. A comparison of bandwidth
obtained through HPX parallel algorithms and standalone SYCL
implementation, provided by GPU-STREAM[5], gives a clear view
whether there is an overhead when performing the same task from
HPX and how significant it is.

Our testing platform was an AMD GPU R9 Nano with a memory
bandwidth of 512 GB/s. Results have been gathered from 100 runs
with first timing ignored. A SYCL compiler ComputeCpp in version:
CommunityEdition-0.1.1 has been used for both measurements.
All four functions have been enqueued with sycl::nd_range and
local work size equal to 256. sycl::range has not been used due
to technical problems appearing inside HPX.
We compare the slowdown to results from CUDA backend running
NVIDIA Tesla K40m GPU, as presented in [6]. Direct comparison
of SYCL and CUDA backends on the same device is not possible at
the present time. SYCL kernels can only run on devices supporting
SPIR, an intermediate language for OpenCL kernels, and all CUDA-
enabled devices are lacking this feature.

Results presented on figure 1 show that SYCL backend is about
2.1% slower than native implementation, with 3.2% worst slowdown
on copy functionality. New backend creates larger overhead on
AMD devices than CUDA implementation showing 0.4% slowdown
on NVIDIA GPUs. Taking into consideration performance concerns
of asynchronous callbacks, as described in section 4.2, we include
results obtained when futures are disabled and no callbacks are
created in OpenCL runtime1. Comparing to purely synchronous
execution, average slowdown drops to about 0.6% with a worst
slowdown of 1.8%, again in copy function.

1Obviously, STREAMbenchmark involves sequences of purely synchronous executions.
However, HPX usually implements synchronous algorithms as a call to asynchronous
implementation immediately followed by waiting on futures.

IWOCL ’17, May 16-18, 2017, Toronto, Canada Marcin Copik and Hartmut Kaiser

Scale Copy Add Triad
0

100

200

300

400

Ba
nd

w
id
th

(G
B/
s)

STREAM benchmark on 305 MB arrays

HPX HPX without callbacks SYCL

Figure 1: Results of STREAM benchmark with two different
implementations based on SYCL. The benchmark run on a
single AMD GPU R9 Nano. Best results obtained from 100
iterations.

Figure 2 gives an insight into overheads created by HPX for
different array sizes. Difference is quite significant for small array
sizes, resulting in almost 55% slowdown in worst case. For larger
array sizes time spent on execution becomes large enough to hide
latencies introduced in HPX. The results seem to correspond with
measurements obtained on CUDA backend.

6 CONCLUSION
So far we have been able to implement most of features related to
Compute. Full integration requires SYCL capabilities which seem
to not be supported yet in available compilers. Reaching our next
goals involves solving the issue of transferring non-standard layout
types to the device, such as std::tuple. An implementation of for_-
loop would vastly enhance capabilities of GPU-parallelized STL
algorithms and we can not proceed with it unless C++ tuple is
supported in host-device data movement. Further work may be
concentrated on optimizing algorithms for GPU execution and on
an interface to access on-chip memory which would be compatible
across different standards. In our opinion, such feature is necessary
to offer generic kernels which are not only standard-conforming
but can compete with other tools in terms of performance.

Another important step is to bring support for multiple devices
to SYCL backend and evaluate performance with segmented algo-
rithms.

Comparing to other standards evaluated for HPX.Compute, SYCL
has its own advantages and disadvantages. A higher-level memory
management runtime may find its use in applications working with
multiple devices but it may hurt runtime and libraries which want
to explicitly perform data allocation and movements, such as HPX.
The memory model could not be implemented without accessors

0.01 0.1 1 10 100
0.1

1

10

100

Array size (MB)

Ba
nd

w
id
th

(G
B/
s)

STREAM scaling with size

HPX HPX without callbacks SYCL

Figure 2: Results of STREAM benchmark scaling from very
small to larger arrays, from less than 1 MB to 305 MB. The
benchmark run on a single AMD GPU R9 Nano. Best results
obtained from 100 iterations.

which enforce manual conversion of complex types representing
device data on the host side. On the other hand, SYCL has made an
important step forward for better integration with C++ by doing a
proper analysis of source code to determine which functions should
be built with device compiler, removing a need for additional and
non-standard markups.

There is no single standard for single-source C++ accelerator pro-
gramming which would support all major vendors offering graphic
processors for HPC systems. Neither HC nor SYCL can compete
now with CUDA backend due to lack of support for OpenCL and
HSA features on CUDA-enabled devices. Our results so far give
an indication that SYCL may be capable of serving as a standard
backend for HPX.Compute with graphic processors supporting
OpenCL’s intermediate representation SPIR.

ACKNOWLEDGMENTS
We would like to express our gratitude to Codeplay Software’s
ComputeCpp development team for support, suggestions, and dis-
cussions on integrating SYCL with HPX.

REFERENCES
[1] AMD. Bolt C++ Template Library, version 1.3, 2015. https://github.com/

HSA-Libraries/Bolt.
[2] AMD. Heterogeneous Computing C++ API, 2016. https://scchan.github.io/hcc/.
[3] AMD. HCC: An open source C++ compiler for heterogeneous devices, 2016.

https://github.com/RadeonOpenCompute/hcc/.
[4] M. Copik. HPX and GPU parallelized STL. C++Now, 2016. URL https:

//cppnow2016.sched.org/event/6SfU.
[5] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith. GPU-STREAM v2.0:

Benchmarking the Achievable Memory Bandwidth of Many-Core Processors Across
Diverse Parallel Programming Models, pages 489–507. Springer International Pub-
lishing, Cham, 2016. ISBN 978-3-319-46079-6. doi: 10.1007/978-3-319-46079-6_34.

https://github.com/HSA-Libraries/Bolt
https://github.com/HSA-Libraries/Bolt
https://scchan.github.io/hcc/
https://github.com/RadeonOpenCompute/hcc/
https://cppnow2016.sched.org/event/6SfU
https://cppnow2016.sched.org/event/6SfU

Using SYCL as an Implementation Framework for HPX.Compute IWOCL ’17, May 16-18, 2017, Toronto, Canada

URL http://dx.doi.org/10.1007/978-3-319-46079-6_34.
[6] T. Heller, H. Kaiser, P. Diehl, D. Fey, andM. A. Schweitzer. Closing the Performance

Gap with Modern C++, pages 18–31. Springer International Publishing, Cham,
2016. ISBN 978-3-319-46079-6. doi: 10.1007/978-3-319-46079-6_2. URL http:
//dx.doi.org/10.1007/978-3-319-46079-6_2.

[7] J. Hoberock and N. Bell. Thrust: A parallel template library. Thrust: A Parallel
Template Library, 2009.

[8] J. Hoberock, M. Garland, and O. Girioux. N4406 Parallel Algorithms Need
Executors. Technical report, 2015. URL http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2015/n4406.pdf.

[9] H. Kaiser, B. Adelstein-Lelbach, T. Heller, A. BergÃľ, J. Biddiscombe, A. Biki-
neev, G. Mercer, A. SchÃďfer, J. Habraken, A. Serio, M. Anderson, M. Stumpf,
D. Bourgeois, P. Grubel, S. R. Brandt, M. Copik, V. Amatya, K. Huck, L. Viklund,
Z. Khatami, D. Bacharwar, S. Yang, E. Schnetter, Bcorde5, M. Brodowicz, Bibek,
atrantan, L. Troska, Z. Byerly, and S. Upadhyay. hpx: HPX V0.9.99: A general
purpose C++ runtime system for parallel and distributed applications of any
scale, July 2016. URL https://doi.org/10.5281/zenodo.58027.

[10] J. D. McCalpin. Stream: Sustainable memory bandwidth in high performance
computers. Technical report, University of Virginia, Charlottesville, Virginia,
1991-2007. URL http://www.cs.virginia.edu/stream/. A continually updated
technical report. http://www.cs.virginia.edu/stream/.

[11] Microsoft Corporation. C++ AMP Open Specification V1.2. Technical report,
2013.

[12] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with cuda. Queue, 6(2):40–53, Mar. 2008. ISSN 1542-7730. doi: 10.1145/1365490.
1365500. URL http://doi.acm.org/10.1145/1365490.1365500.

[13] R. Potter, P. Keir, R. J. Bradford, and A. Murray. Kernel composition in sycl.
In Proceedings of the 3rd International Workshop on OpenCL, IWOCL ’15, pages
11:1–11:7, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3484-6. doi: 10.
1145/2791321.2791332. URL http://doi.acm.org/10.1145/2791321.2791332.

[14] A. D. Robison, P. Halpern, R. Geva, and C. Nelson. P0075r1 Template Library for
Parallel For Loops. Technical report, 2016. URL http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2016/p0075r1.pdf.

[15] J. Szuppe. Boost.compute: A parallel computing library for c++ based on opencl.
In Proceedings of the 4th International Workshop on OpenCL, IWOCL ’16, pages
15:1–15:39, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4338-1. doi:
10.1145/2909437.2909454. URL http://doi.acm.org/10.1145/2909437.2909454.

[16] The Khronos Group. SYCL Provisional Specification Version 2.2. Technical
report, 2016.

[17] A. Vilches and R. Reyes. Syclparallelstl: A parallel stl li-
brary for heterogeneous systems. 1st SYCL Programming
Workshop, 2016. URL http://ppopp16.sigplan.org/event/
sycl-2016-papers-syclparallelstl-a-parallel-stl-library-for-heterogeneous-systems.

[18] M. Wong, A. Richards, M. Rovatsou, and R. Reyes. P0236R0 Khronos’s OpenCL
SYCL to support Heterogeneous Devices for C++. Technical report, 2016. URL
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf.

[19] J. Wu, A. Belevich, E. Bendersky, M. Heffernan, C. Leary, J. Pienaar, B. Roune,
R. Springer, X. Weng, and R. Hundt. Gpucc: An open-source gpgpu compiler.
In Proceedings of the 2016 International Symposium on Code Generation and
Optimization, CGO ’16, pages 105–116, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-3778-6. doi: 10.1145/2854038.2854041. URL http://doi.acm.org/10.
1145/2854038.2854041.

http://dx.doi.org/10.1007/978-3-319-46079-6_34
http://dx.doi.org/10.1007/978-3-319-46079-6_2
http://dx.doi.org/10.1007/978-3-319-46079-6_2
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf
https://doi.org/10.5281/zenodo.58027
http://www.cs.virginia.edu/stream/
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/2791321.2791332
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0075r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0075r1.pdf
http://doi.acm.org/10.1145/2909437.2909454
http://ppopp16.sigplan.org/event/sycl-2016-papers-syclparallelstl-a-parallel-stl-library-for-heterogeneous-systems
http://ppopp16.sigplan.org/event/sycl-2016-papers-syclparallelstl-a-parallel-stl-library-for-heterogeneous-systems
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf
http://doi.acm.org/10.1145/2854038.2854041
http://doi.acm.org/10.1145/2854038.2854041

	Abstract
	1 Introduction
	2 Technologies
	3 Implementation
	3.1 Data locality
	3.2 Execution
	3.3 Algorithms
	3.4 Device accessors

	4 Issues
	4.1 Kernel naming
	4.2 Asynchronous communication
	4.3 Data transfers
	4.4 Non-standard layout datatypes

	5 Results
	6 Conclusion
	Acknowledgments
	References

