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Chapter 1: Introduction  

Overview 

     This report describes and discusses the process of seeking a work-efficient design for the 

parallel prefix scan algorithm that would fit into the HPX (High Performance Parallex) execution 

model for C++ users, and the analytic results of the work done during the process. It is part of 

the HPX project that is ongoing within the Center of Computation and Technology and the 

STEllAR-GROUP, which aims to provide a general purpose C++ runtime system for parallel and 

distributed application development of any scale.  

Background and Motivation 

     Algorithm designers with years of experience often knows how to rely on a set of building 

blocks and on the tools needed to put the blocks together into an algorithm, and many of the 

parallel algorithms eventually fall back to sequential algorithms to look for building blocks and 

tools needed. Prefix scan algorithm, also commonly known as prefix sum, is a useful building 

block for many algorithms including searching, sorting, and building data structures. Being able 

to run prefix scan algorithm in parallel grants software programmers and algorithm designers 

more flexibility and scalability when it comes to processing a large amount of data in parallel or 

designing other parallel algorithms that relies heavily on prefix scan algorithm to improve their 

work-efficiency.   

     While the research on implementing parallel prefix scan algorithm are nothing new, the 

novelty of my project is to search and identify a design pattern that runs the algorithm not only 
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in parallel, but also asynchronously in order to fully utilize the computing advantage brought by 

multi-core CPU devices. Having determined the design pattern to use, my project takes the next 

step and implements the asynchronous prefix scan algorithm with several compatible designing 

tools given a variety of choices in hand, including C++ standard library, Boost library, and the 

HPX execution model, a general purpose C++ runtime system for parallel and distributed 

application development of any scale. Compared to conventional execution models, HPX allows 

me to design and implement the prefix scan algorithm not only in parallel, but also in an 

asynchronous fashion so that the risk of "data race" or "broken invariant" during the execution 

is significantly reduced, and multi-core CPU can reach its full potential to optimize the process 

time for large scale of data when using this algorithm. 

Objective 

The final goal of this project is twofold: 

1. Search and identify a work-efficient way to design an asynchronous version of the prefix 

scan algorithm and prove its superiority on computing efficiency by comparing the 

execution time against those of the sequential algorithm and the parallel algorithm. 

2. Attempt to implement the algorithm using several compatible programming tools, and 

eventually include it in the HPX Execution Model such that developers can use it as a 

cornerstone for designing and building systems in a time efficient manner, and algorithm 

designers can further apply it to designing other parallel versions of generic algorithms.  

Methodology 
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To achieve the above goals, a series of methodology need to be followed: 

1. Designing and implementing the sequential version of the prefix scan algorithm that can be 

applied to any container type that has an input and output iterator, which shall serve as the 

building block for parallel and asynchronous algorithm designs. 

2. Based on the sequential version of algorithm, design and implement the asynchronously 

parallel prefix scan algorithm using additions from the Boost library, and compare its 

performance with the synchronous version. 

3. To further improve the performance, extending the previous design by utilizing APIs 

provided by HPX execution model. To do that, the code from the previous step need to be 

ƳƻŘƛŦƛŜŘ ŀƴŘ ǊŜǎǘǊǳŎǘǳǊŜŘ ǘƻ ŎƻƴŦƻǊƳ ǘƻ ǘƘŜ ƴŜǿ !tLΩǎ ǎȅƴǘŀȄ ŀƴŘ principles. 

4. Comparing the performance differences in terms of execution time, and analyze the reasons 

for those differences based on algorithm designs. 

5. Briefly specifying how the parallel prefix scan algorithm can be utilized to simplify and 

improve the design of other algorithms including quick sort and unique sort. 

 

Chapter 2: Tool Description  

Environment and Developing Platform 

     This project is implemented and tested using a machine with Windows 8 64-bit operating 

system, and an I7 Intel CPU that has 8 Cores and 32GB RAM. This environment is intended to 

provide the project application with sufficient computation power for measuring its 
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performance under large scale of data. The whole application program is written in C++, and 

the IDE selected to compile and build the source code is Microsoft Visual Studio 2013. The 

reason C++ was chosen as the go-to language for implementing this program is because C++ is a 

low-ƭŜǾŜƭ ŎƻƳǇƭƛŜŘ ƭŀƴƎǳŀƎŜΣ ǿƘƛŎƘ ŀƭƭƻǿǎ ƛǘ ǘƻ ōŜ ŎƻƳǇƛƭŜŘ ŘƛǊŜŎǘƭȅ ǘƻ ŀ ƳŀŎƘƛƴŜΩǎ ƴŀǘƛǾŜ ŎƻŘŜΣ 

making it one of the fastest languages in the world when optimized. Such language is more 

suitable for programs like device driver or very high performance programs that really need 

access to the hardware. Since the main objective of this program is to search and identify the 

design that brings better computing performance, it makes sense to choose a low-level 

compiled language like C++ to implement the algorithm over some other object-oriented 

programming (OOP) languages such as Java or C#, which relies on a just-in-time compiler (JIT-

compiled) and involves quite a lot boxing and unboxing of object that takes extra CPU resources 

and time.  

     As for Microsoft Visual Studio 2013, it is chosen as the IDE due to its user friendly interface 

design and the full support of C++ standard library, which makes it very convenient and 

powerful platform to write, compile, build, and debug code. 

C++14 Standard Library 

     C++14 is the informal name for the most recent revision of the C++ ISO/IEC standard, 

formally "International Standard ISO/IEC 14882:2014(E) Programming Language C++". C++14 is 

intended to be a small extension over C++11, featuring mainly bug fixes and small 

improvements, and is therefore the standard library upon which this program is built. C++14 

standard library provides all the necessary tools needed to implement the prefix scan 
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algorithm, and it comes with a full support of multi-thread and asynchronous functions. That 

being said, C++14 standard library has its limit in terms of multi-thread optimization and 

asynchronous computing capability, which is why the following two additions are introduced 

into this application. 

Boost C++ Library 

     As the name suggest, Boost C++ library is a set of open-source peer-reviewed portable C++ 

ƭƛōǊŀǊƛŜǎ ǘƘŀǘ ŀǊŜ ƛƴǘŜƴŘŜŘ ǘƻ ƎƛǾŜ /ҌҌ ǎǘŀƴŘŀǊŘ ƭƛōǊŀǊȅ ŀ άōƻƻǎǘέ ōȅ ƛƴŎǊŜŀǎƛƴƎ ǘƘŜ ǘŀǎƪ ŀƴŘ Řŀǘŀ 

structure that C++ supports, including s linear algebra, pseudorandom number generation, 

image processing, regular expressions, unit testing, and of course, multithreading. Many of 

.ƻƻǎǘΩǎ ŦƻǳƴŘŜǊǎ ŀǊŜ ƻƴ ǘƘŜ /ҌҌ ǎǘŀƴŘŀǊŘǎ ŎƻƳƳƛǘǘŜŜΣ ǿƘƛŎƘ ƳŀƪŜǎ .ƻƻǎǘ ƭƛōǊŀǊȅ ŀ ǘǊǳǎǘȅ ŀƴŘ 

safe addition for C++ standard library. One major advantage of Boost library is that most of its 

libraries are header based, consisting of inline functions and extensive use of templates, and as 

such do not need to be built in advance of their use. Compared to C++ standard library, Boost 

libraries offer ŀ ǾŀǊƛŜǘȅ ƻŦ ŦŜŀǘǳǊŜǎ ǘƘŀǘ ǎƛƎƴƛŦƛŎŀƴǘƭȅ ŜƴƘŀƴŎŜǎ ǘƘŜ ǇǊƻƎǊŀƳΩǎ ŀǎȅƴŎƘǊƻƴƻǳǎ 

computing capability.  

HPX Execution Model 

     As useful as Boost C++ library can be for this application, there is a trade-off in computing 

performance. Since the Boost C++ library has a heave rely on the use of templates to build its 

library, the runtime performance receives a penalty as it generally takes a much longer time for 

the compiler to locate and identify the correct template to use from the massive template 

pools, which creates barriers to high level of scalability. As a result, HPX (High Performance 
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Parallex) execution model was introduced as the second additional tool to further improve this 

ǇǊƻƎǊŀƳΩǎ ǎŎŀƭŀōƛƭƛǘȅ ōȅ providing APIs with more condensed template pool and restructured 

algorithm implementation. HPX aims to provide a portable and highly optimized programming 

model which smartly utilizes the available resources to achieve unprecedented levels of 

scalability. Since the HPX library strictly adheres to the C++11 Standards and leverages the 

Boost C++ libraries, it leads to a smooth transition for someone with C++ and Boost background 

to use. 

 

Chapter 3: Algorithm Design and Implementation  

Sequential Prefix Scan 

     Sequential prefix scan algorithm is a one of the most fundamental and widely used 

algorithms in object-oriented programming and algorithm design. Its basic form is composed of 

two sequences of numbers and a binary associative operator: one input sequence of numbers 

{X0, X1, X2,ΧΧΣ·ƴϒ ŀƴŘ ŀƴ ƻǳǘǇǳǘ ǎŜǉǳŜƴŎŜ ƻŦ ƴǳƳōŜǊǎ ϑ¸лΣ ¸мΣ ¸нΣΧΧΣ¸ƴϒ ǿƘƻ ǎƘŀǊŜǎ ǘƘŜ 

same size as the input sequence. In the most common scenario, the binary associate operator 

ṥ is replaced with an addition, which would lead to an algorithm also known as (aka) prefix 

sums in which each output number is the sum of all the prefix number in the input sequence. 

Y0 = X0; 

Y1 = X1 + Y0; 

Y2 = X2 + Y1; 

Y3 = X3 + Y2; 

ΧΧ 
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For instance, the prefix sums of the natural numbers are the triangular numbers: 

     To sum up this basic prefix sum algorithm, we get the formula: Y[i] = Y[i-1] + X[i]. While this 

formula looks rather trivial, it forms the basis of the higher-order function of scan in functional 

programming and the parallel version. 

     Before the higher-order function get discussed, one thing needs to be noted is that prefix 

scan algorithm is made of two different versions: inclusive prefix scan (aka inclusive scan) and 

exclusive prefix scan (aka exclusive scan). The only difference between these two versions is 

whether each result in the output sequence includes the corresponding input operand in the 

partial operation. For instance, this previous example we see is an inclusive scan because each 

result includes the corresponding input operand in the partial sum: 

     In comparison, each result in the output sequence does not include the corresponding input 

operand under the exclusive scan algorithm, and the results would become:  

     It does not require much attention to notice that the initial output value in the exclusive scan 

example shown above is replaced with a 0, which does not provide user the necessary flexibility 

Input        1        2        3        4         5        6      ΧΧΦ 

Output        1        3        6        10        15        21      ΧΧΦ 

Input(X)        1        2        3        4         5        6      ΧΧΦ 

Output(Y)        1        3        6        10        15        21      ΧΧΦ 

Input(X)        1        2        3        4         5        6      ΧΧΦ 

Output(Y)        0        1        3        6        10        15      ΧΧΦ 
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during the computation. Also like mentioned above, the higher-order function of scan requires 

more computing capability than addition operator. Therefore, extending the current algorithm 

to a more generalized version of prefix scan proves to be necessary. 

     In the more generalized version, two new parameters are introduced: the binary associative 

operation ṥ which takes two arguments of the same type, and an initial value. The binary 

associative operation ṥ can be either addition, multiplies, or even Boolean operation such 

as maximum or minimum. The initial value is used to initialize the first result in the output 

sequence, and it works both inclusive and exclusive scan algorithm. For instance, if the 

initial value is set to 3, the previous examples shown above would each generate a different 

set of output sequence: 

Inclusive sums: 

Exclusive sums: 

     Considering these previously discussed features and the fact that this parallel prefix scan 

algorithm, when falling back to sequential execution, should simulate the flexibility of a generic 

algorithm in the C++ standard library, the final implementation should work with any container 

type that possesses an input and an output iterators, such as an array or a linked list. As a 

result, the sequential prefix scan algorithm was implemented as follows: 

Input(X)        1        2        3        4         5        6      ΧΧΦ 

Output(Y)        4        6        9        13        18        24      ΧΧΦ 

Input(X)        1        2        3        4         5        6      ΧΧΦ 

Output(Y)        3        4        6        9        13        18      ΧΧΦ 
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A few key points to be noted about this algorithm: 

1. The input and output container types are deduced by templates to work with the most 

primitive iterator types: input and output iterators; 

//Sequential Exclusive Scan Algorithm// 

template<typename InputIterator, typename OutputIterator,  

typename T = std::iterator_traits<InputIterator>::value_type,  

typename BinaryOp = std::plus<T>> 

OutputIterator exclusive_scan(InputIterator first, InputIterator last, OutputIterator dest,  

T init = T(), BinaryOp op = BinaryOp()) 

{ 

    for (/**/; first != last; (void) ++first, ++dest) 

    { 

        *dest = init; 

        init = op(init, *first); 

    } 

    return dest; 

} 

 

//Sequential Inclusive Scan Algorithm// 

template<typename InputIterator, typename OutputIterator,  

typename T = std::iterator_traits<InputIterator>::value_type,  

typename BinaryOp = std::plus<T>> 

OutputIterator inclusive_scan(InputIterator first, InputIterator last, OutputIterator dest,  

T init = T(), BinaryOp op = BinaryOp()){ 

    for (/**/; first != last; (void) ++first, ++dest) 

    { 

        init = op(init, *first); 

        *dest = init; 

    } 

    return dest; 

} 
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2. Iterator_traits<InputIterator>::value_type is used to pre-define the type T the algorithm can 

work with, which is the initial value type. It specifies that T by default has to be a type that 

can be pointed at and dereferenced by an iterator; 

3. BinaryOp, which represents the binary operation type, is also by default a std::plus<T> 

operation that takes two arguments with T type. 

4. Initial value init and binary operation op are supplied with default argument values T() and 

BinaryOp(), each of which represents an instance of its type. In the case where these two 

arguments are not specified at the point of invocation, the default argument values will be 

used. 

5. Within the for loop, (void) casts the result of ++first which prevents any possibly defined 

comma operators (i.e. InputIterator::operator,()) from being used. 

     While the sequential prefix scan algorithm is quite straight-forward to use and easy to 

comprehend, it is not quite a time-efficient way to produce output results when the input 

number sequence becomes really large. The cause for the slow-down is simple: each output[N] 

has to wait for the result from previous output[N-1] to compute before the algorithm can 

continue, and thus the computing complexity of the computation is O(N). As multi-core CPU 

becomes increasingly popular among the industry, the need for designing parallel algorithms 

that would approach the efficiency of the sequential algorithm, while still taking advantage of 

the parallelism in the CPU is obvious. 

Parallel Prefix Scan 

     The parallel prefix scan algorithm that is currently known and used by most programmers 

and algorithm designers is the one presented by Prof. Blellock in 1990 based on an algorithmic 
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pattern that often appears in parallel computing: balanced trees. This pattern aims to build a 

balanced binary tree on the input data and comprises two άsweepέ phases ς up sweep and 

down sweep ς to produce the prefix scan results. As a result, a binary tree with N input nodes 

has d = log2(N) depths with 2^d nodes at each depth. In the up sweep phase, the algorithm 

traverses the balanced tree from terminal nodes to root node computing partial operation at 

internal nodes of the tree. This phase looks as follows for parallel prefix sums algorithm: 

 

     It can be seen from the balanced tree above that at each depth, the sum of two internal 

nodes were computed to generate one upper-level node until the sum of the root node is 

computed, which also represents the sum of all the input sequence numbers. It is also worth 

noting that each node is made of a special data structure consisting of three property values: 

index of the input sequence, sum after each depth, and fromleft value that shall be used during 
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the down-sweep phase computation. This special node structure and the up sweep phase 

algorithm can be implemented in C++ as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

     The up sweep algorithm first for loops through each depth. Within each depth, the partition 

size is calculated based on the size of the input sequence and the current depth. This partition 

size is then used in the nested while loop to locate the specific pair of internal nodes for the 

sum calculation in order to produce the nodes of the next depth. Aside from the obvious 

difference in algorithm design, the most notable difference between the sequential version of 

the prefix scan and this parallel version is that the sequential version uses <template> to 

//Tree node structure// 

Class TreeNode 

{ 

Public: 

     TreeNode(): sum(0), fromleft(0), index(0) {} 

     int sum; 

     int fromleft; 

     int index; 

} 

 

//up sweep phase implementation// 

void up_sweep_phase(std::vector<TreeNode>& nodes) 

{ 

    size_t size = nodes.size();         

for (size_t depth = 0; depth <= std::log2(size) -1; ++depth) 

{ 

        size_t partition_size = (size - 1) % pow(2, depth+1) + 1; 

        int k = 0; 

        while (k<size - 1) 

        { 

            nodes[k + pow(2, depth + 1) - 1].sum += nodes[k + pow(2, depth) - 1].sum; 

            k += partition_size; 

        } 

} 

} 
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deduce the type of input sequence container it accepts as arguments, and any container type 

that possesses input and output iterators is a valid argument type, while the parallel version 

only accepts container types that possess random access iterators such as std::vector<>. The 

reason for the random access iterator is because of this step:  

ϑΧΦ nodes[k + pow(2, depth + 1) - 1].sum += nodes[k + pow(2, depth) - 1].sum; ΧΦϒ  

This particular calculation requires the container indices to be advanced to specific positions by 

a certain distance, which is beyond the capability of input and output iterators as they can only 

be incremented by one position during each iteration.  

The down sweep phase algorithm uses the same concepts as the up sweep phase as it traverses 

back down the tree from the root node to the terminal nodes, using the partial sums from the 

up sweep phase to produce the output scan results. This phase looks as follows for the previous 

prefix sum example: 
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     The down sweep phase begins by assigning 0 to the fromleft value of the root node, and on 

each step, each node at the current level passes its own fromleft value to its left child, and the 

sum of its fromleft value and the sum value of its left child to its right child until the fromleft 

value of all the terminal nodes were computed. To produce the final output sequence, it 

requires one more step to calculate the sum of the original input value for each node and its 

corresponding fromleft value after the down sweep phase. The down sweep phase can be 

implemented in C++ as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

     Despite the fact that the parallel prefix scan algorithm described above has been well known 

for a long time and widely used to improve computing efficiency on modern parallel hardware 

such as a GPU, there exists several limits about this algorithm design that make it not a 

desirable choice for the HPX execution model. First, the restriction on the type of input 

container and iterators that the algorithm can accept makes it not very versatile candidate as all 

//down sweep phase implementation// 

void down_sweep_phase(std::vector<TreeNode>& nodes) 

{ 

    size_t size = nodes.size(); 

    for (size_t depth = std::log2(size) - 1; depth >= 0; ++depth) 

{ 

    vector<TreeNode>::size_type partition_size = (size - 1) % pow(2, depth + 1) + 1; 

        int k = 0; 

        while (k > size - 1) 

        { 

            nodes[k + pow(2, depth) - 1].fromleft = nodes[k + pow(2, depth + 1) - 1].fromleft; 

            nodes[k + pow(2, depth + 1) - 1].fromleft += nodes[k + pow(2, depth) - 1].sum; 

            k += partition_size; 

        } 

    } 

} 
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the generic algorithms in C++ standard library are expected to have the capability of deducing 

their argument types through the use of <template>. While HPX is yet to become a part of the 

generic algorithm library, it aims to provide the same versatility.  

     Second, this algorithm depends on two special data structures ς balanced tree and tree node 

ς to accomplish the implementation. The balanced tree data structure requires the size of input 

sequence to be {X: X ɴ  2 to the power of N, N>0} for the algorithm to work properly, which is 

not preferable for applications that may generate random number of input data. Under 

scenarios where input size is random, the user has to find the biggest 2 to the power of N within 

the input size first by converting the input size to its binary number format via a function below: 

 

 

 

 

 

 

 

 

 

     By invoking this converting function, an integer number that represents the size of the input 

sequence shall be converted to its binary format and stored in a std::vector<bool> container. 

For instance, number 2000 is converted to {1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0}, in which the first 1 

represents 2^10 = 1024 and also the biggest 2 to the power of N within 2000. The parallel prefix 

scan algorithm shall work with the first 1024 input elements first before moving on to the 

std::vector<bool> to_binary(int num) 

{ 

    std::vector<bool> num_binary; 

    while (true) 

    { 

        int remainder = num % 2; 

        bool binary = remainder == 0 ? false : true; 

        num /= 2; 

        num_binary.push_back(binary); 

        if (num == 0) break; 

    } 

    std::reverse(num_binary.begin(), num_binary.end()); 

    return num_binary; 

} 
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second biggest 2 to the power of N within 2000, which is 512. This iteration continues so on and 

so forth until the size left is too small to justify a parallel algorithm and shall be processed 

sequentially. Not only does this lead to abundant separation and iteration among calculation, it 

is also quite tricky to justify the point where it should start processing input sequentially.  

     Last but not least, this parallel algorithm practically states that it processes two elements per 

thread, so the maximum size of the input sequence this algorithm can scan is determined by 

ǘƘŜ ƳŀŎƘƛƴŜΩǎ ƘŀǊŘǿŀǊŜΦ CƻǊ ƛƴǎǘŀƴŎŜΣ the maximum array size this algorithm can scan on an 

NVIDIA 8 Series GPU is 1024 due to hardware limit. Given that the initial input size is 1024, 512 

threads need to be generated at the first depth for the parallel computation, which could lead 

to a performance hit due to the issue of Overhead (the issue of overhead will be discussed in 

more detail in the next chapter). For HPX execution model whose main target is to offer 

scalability for large size of data, this harsh limit on maximum input size clearly does not fit into 

its scheme. After considering all three factors discussed above, it is obvious that this version of 

parallel prefix scan algorithm does not provide the necessary versatility and scalability that HPX 

envisioned for its algorithm design. 

Asynchronously Parallel Prefix Scan 

      The final version of the parallel prefix scan algorithm used in HPX should be one that 

conforms to the C++14 standard proposal, provides the type deduction capability of a generic 

algorithm, and proves to be work-efficient when dealing with a large arbitrary number of data. 

Given these requirements, the best possible solution seems to be falling back to the sequential 

version of the algorithm created in the first section and first handling each partition of the input 



Final Project Report ς Parallel Prefix Scan in HPX                                                      Chen Guo   89-721-5779 

20 
 

sequence independently, and then compile all executions asynchronously to compute the final 

results using a key feature from the C++ standard library called std::future<>. A future is an 

object that can retrieve a value from some provider objects or asynchronous operations and 

store it in a memory place called shared state. Whenever the value in the shared state is ready 

to be retrieved, the future object would notify the creator of the asynchronous operation and 

allow it to use a variety of methods to query, wait for, or extract a value from the future object. 

By creating a future instance via the AIP std::async() and specifying the execution policy to be 

std::launch::async, a new thread is created each time on top of the ongoing thread to execute 

the operation asynchronously. The actual implementation in C++ looks as follows:  

 

 

 

 

 

 

 

 

 

 

vector<future<int>> vec_f, vec_f2; 

vector<vector<double>> vec_ret; 

vector<double> input, intermediate_input, intermediate_output; 

 

κκΧΦ/ƻƳǇƭŜǘŜ ƛƴǇǳǘ ƎŜƴŜǊŀǘƛƻƴΧΦκκ 

int hardware_threads = thread::hardware_concurrency(); //return the number of cores 

vector<double>::size_type partition_size = input.size() / hardware_threads; //get partiti ons 

vec_ret.resize(hardware_threads);  //pre -generate vector sizes 

intermediate_input.resize(hardware_threads); 

 

//First loop of future<> generation// 

for (auto threadNum = 0; threadNum < hardware_threads - 1; ++threadNum) 

{ 

    future<int> f = async(launch::async, [&vec_ret, &input, &intermediate_input, threadNum, partition_size]()->int{ 

        vector<double> sequential_ret; 

        sequential_ret.reserve(partition_size); 

        inclusive_scan(begin(input) + threadNum*partition_size, begin(input) + (threadNum + 1)*partition_size, 

back_inserter(sequential_ret)); 

        intermediate_input[threadNum] = sequential_ret.back(); 

        vec_ret[threadNum] = move(sequential_ret); 

        return 0; 

    }); 

    vec_f.push_back(move(f)); 

}   //continued ƴŜȄǘ ǇŀƎŜΧΦ κκ 
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//Main thread execution//  

vector<double> sequential_main; 

sequential_main.reserve(partition_size); 

inclusive_scan(begin(input) + (hardware_threads - 1)*partition_size, end(input), back_inserter(sequential_main)); 

intermediate_input[hardware_threads - 1] = sequential_main.back(); 

vec_ret[hardware_threads - 1] = move(sequential_main); 

 

//Wait for each thread to finish// 

for (auto threadNum = 0; threadNum < hardware_threads - 1; ++threadNum) 

    vec_f[threadNum].wait(); 

 

//Calculate intermediate results// 

inclusive_scan(intermediate_input.begin(), intermediate_input.end(), back_inserter(intermediate_output)); 

 

//Second round of future<> generation// 

for (auto threadNum = 0; threadNum < hardware_threads - 1; ++threadNum){ 

    future<int> f; 

    if (threadNum != 0) 

    { 

        f = async(launch::async, [&vec_ret, threadNum, &intermediate_output]()->int{ 

            for_each(begin(vec_ret[threadNum]), end(vec_ret[threadNum]), [&](double& d){ 

                d += intermediate_output[threadNum - 1]; 

            }); 

            return 0; 

        }); 

        vec_f2.push_back(move(f)); 

} 

} 

 

//Main thread execution//  

for_each(sequential_main.begin(), sequential_main.end(), [&](double& d)->void{ 

    d += intermediate_output[hardware_threads - 2]; 

}); 

 

for (auto i = 0; i < vec_f2.size(); ++i)  //wait for each threads to finish// 

        vec_f2[i].wait(); 
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     Before the first loop, the code above first figures out how many cores the machine provides 

by calling thread::hardware_concurrency, which represents the maximum threads the code can 

ƎŜƴŜǊŀǘŜ ǘƻ ŀŎƘƛŜǾŜ άǘǊǳŜ ǇŀǊŀƭƭŜƭƛǎƳέ ǿƘŜƴ running the program. During the first loop, an 

instance of std::future<int> is created for each iteration by calling std::async() with a lambda 

function in which each partition of the input sequence is calculated independently with an 

sequential version of inclusive_scan(), and then this std::future<int> instance is pushed into a 

vector in sequence. One thing to be noted is that instead of calling vec_f.push_back(f), move(f) 

was sent as the argument. This is because std::future class does not provide a copy constructor 

and each future instance is unique, and thus cannot be copied but only moved by reference. 

Another thing to be noted is that only (hardware ς 1) number of extra threads were created, 

and this is because the main thread that is currently running this program will also be used to 

handle part of the partition, which is what happened next in the code. After the execution from 

the main thread, the program wait for each thread generated during the loop to finish by 

calling std::future::wait(). The results from each thread and the main thread were then used as 

intermediate input to calculate the intermediate output for each thread N, which were later 

used as input to calculate the final results for thread (N+1). This process in practice works as 

follows:  

 

              
 
 
 
 
 

     Thread 1                Thread 2                Main Thread 

Inputs:     1 2 3  4   5   ||  6   7    8     9   10  ||   11  12  13  14  15 

After calling the sequential inclusive scan (plus) on each thread independently: 

Outputs:  1 3 6 10 15  ||  6 13  21  30  40   ||   11  23  36  50  65 

The sum of each thread is used as intermedaite inputs {15, 40, 65} to calcualte a 

intermedaite output {15, 55, 120} by calling inclusive_scan. To get the final output, the 

intermediate output from thread N needs to be added to each element in thread N+1: 

Final Outputs:  1 3 6 10 15  || 21 28  36  45  55  ||  66  78  91  105  120 
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     The advantage of this asynchronous version of algorithm is that each thread, including the 

main thread, runs its own calculation asynchronously without affecting or waiting for each 

other. !ŦǘŜǊ ŜŀŎƘ ŀŘŘƛǘƛƻƴŀƭ ǘƘǊŜŀŘ ŦƛƴƛǎƘŜǎ ƛǘǎ ŎŀƭŎǳƭŀǘƛƻƴΣ ƛǘ ǎŜƴŘǎ ŀ άǊŜŀŘȅέ ƳŜǎǎŀƎŜ ǘƻ ǘƘŜ 

ǎƘŀǊŜŘ ǎǘŀǘŜΣ ŀƴŘ ǘƘŜ Ƴŀƛƴ ǘƘǊŜŀŘ ƭƻƻƪǎ ƛƴǘƻ ǘƘŜ ǎƘŀǊŜŘ ǎǘŀǘŜ ŦƻǊ ǘƘŜ άǊŜŀŘȅέ ƳŜǎǎŀƎŜ ŦǊƻƳ ŀƭƭ 

other threads before it proceeds. Theoretically, this design pattern cuts down the execution 

time based on the number of cores the machine offers during run time. For instance, if the 

original execution time with sequential algorithm for the input is O, and the machine has 8 

cores, the asynchronous algorithm, in theory, should cut the execution time down to O/8 as 8 

all threads are running at the same time, which makes it a very work-efficient algorithm. 

Although in reality, the execution time for this asynchronous algorithm could be much longer 

than O/8 due to a variety of reasons, which is what will be discussed in the next chapter. 

 

Chapter 4: Performance Analysis  

Parallelism Can Be S.L.O.W 

     Having determined the design pattern to use in HPX for the prefix scan algorithm, the work 

left to be done is to make it work efficiently in HPX as parallelism can be S.L.O.W during actual 

execution. S.L.O.W stands for Starvation, Latencies, Overhead, and Waiting for contention 

resolution, and is accounted for the majority of the slow-down that a program experiences. 

Starvation occurs when there is insufficient concurrent work available for the hardware to 

maintain high utilization of all resources. Latencies are used to measure the time-distance delay 
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intrinsic to accessing remote resources and services. Overhead describes the extra work and 

execution time required for the management of parallel actions and resources on the critical 

execution path, which is not necessary in a sequential scenario. Waiting for contention 

resolution displays the delay due to the lack of availability of oversubscribed shared resources. 

Of these four possible reasons for performance slow-down, Latencies and Waiting for 

contention resolution occur mostly because of the hardware incapability instead of software 

design, and therefore are difficult to maneuver by program developers. On the other hand, 

Starvation and Overhead can be effectively controlled and reduced to a certain degree through 

better algorithm design, and thus become the main issues waiting to be addressed. The key to 

address Starvation and Overhead is through fine-grained parallelism.  

     Starvation happens when too many threads are generated at the same time while there is 

not enough workload to be processed, and in turn creates a significant amount of Parallelism 

Overhead that cannot be justified ōȅ ǇǊƻƎǊŀƳ ǇŜǊŦƻǊƳŀƴŎŜΣ ǘƘŀǘ ƛǎΣ ǘƘŜ ǇǊƻƎǊŀƳΩǎ ŜȄŜŎǳǘƛƻƴ 

time is even longer under parallelism design than under sequential design due to Overhead. To 

void this situation, program developer has to design the parallel algorithm carefully to achieve a 

fine-grained parallelism. Fine-grained parallelism ƛǎ ŀŎƘƛŜǾŜŘ ǿƘŜƴ άƧǳǎǘ ǊƛƎƘǘέ ƴǳƳōŜǊ ƻŦ ŜȄǘǊŀ 

threads were generated according to a specific workload so that each thread has its hands full 

processing data while the program benefits from the parallelism. The following example 

demonstrates the relationship between Starvation and Overhead and how it can be solved 

through find-grained parallelism. 

 



Final Project Report ς Parallel Prefix Scan in HPX                                                      Chen Guo   89-721-5779 

25 
 

Assuming workload to be process is 1 million integers: 

  Main Thread   : one thread takes 300 milliseconds to process this workload, no Overhead time. 

  Main Thread    +      Thread 2       Thread 3        Thread 4        Thread5      : Four extra threads 

were generated, therefore each thread is assigned with 1/5 of the original workload, and the 

parallel execution time is cut down to 60 milliseconds, but each thread is actually starving for 

more work. Meanwhile, the time it takes to generate and manage a new thread is 80 

milliseconds, and the Overhead time sums to be 320 milliseconds, which already surpasses the 

total execution time when running a single thread. This parallelism obviously cannot be justified 

and requires a better grained solution.  

  Main Thread   +   Thread 2     : Only one extra thread was generated, therefore each thread is 

assigned ½ of the workload, and the parallel execution time is cut down to 150 milliseconds. 

Adding the one Overhead time from generating thread 2, the total execution time is 230 

milliseconds, which is an improvement to the sequential execution. What about having two 

extra threads then? The parallel execution time will be cut down to 100 milliseconds, when 

adding the Overhead time for generated two more threads, the total execution time becomes 

260 milliseconds, which is still better than sequential execution but worse than when only 

generating one additional thread. As a result, the fine-grained parallelism for this particular 

process with 1 million data set is 2 partition. 

     This example implies that with the time to generate new thread being fixed, the bigger the 

workload, the more beneficial it becomes to generate extra threads. For instance, if the 
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workload takes 3000 milliseconds to process, the 80 milliseconds of Overhead time becomes 

trivial and the program can benefit more from having more threads working together. 

Standard Library Performance 

     As demonstrated in the last section of Chapter 3, the prefix scan algorithm can be fully 

implemented asynchronously using some key features from the C++14 Standard Library such as 

std::future<> and std::async(). But how does it actually perform against the sequential version 

in runtime? A test was conducted using these two versions of prefix scan algorithm and the 

results are shown in the following chart, which demonstrates the performance differences 

between them given an increasing size of data set to work with: 

 

     It is quite clear that the asynchronous version of the prefix scan algorithm performs much 

better than the sequential version according to this test. During the test, the asynchronous 
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version partitioned the data sets based on the maximum number of CPU cores the testing 

machine provides, which is 8 cores in this case, and thus the original workload was divided into 

8 pieces and handled asynchronously. It is also worth noting that as the size of the data set 

increases, the improvements of execution time resulting from the asynchronous algorithm 

become more significant.  

Size Sequential Run Time  Async Run Time Ratio 

1000000 281 188 66.9% 

5000000 1469 919 62.6% 

10000000 3032 1887 62.2% 

50000000 14108 8453 59.9% 

100000000 30064 18548 61.7% 

500000000 139976 90474 64.6% 

 
For instance, given an input size of 1,000,000, asynchronous version reduced the execution 

time to its 61.2%, and this number becomes 59.9% given an input size of 50,000,000. When the 

input size got doubled to 100,000,000, the reduction percentage began to rise to 61.7%. And 

yet when the input size was increased to 500,000,000, the improvement became even less 

significant and was back to 64.6%. One major assumption was proved during this test: while the 

asynchronous version generally performs better than the sequential version, the best result 

was produced when the workload was partitioned into a fine-grained parallelism. Since the 

partition size is set to be 8 in this test, when the workload size was as small as 1,000,000, the 

Overhead generated from additional threads compromised the advantage that parallelism 

provides. Obviously, this advantage from parallelism was maximized when the workload size 

was increased to 50,000,000, which means 8 appears to όƛƴ ŦŀŎǘΣ ƛǘΩǎ ƴƻǘύ be the fine-grained 

partition size that best utilizes the CPU resources when the input size is 50,000,000 for this 

algorithm. So what happened after that? The algorithm performance started to go down when 
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the input size got further extended, which may imply that the current level of parallelism did 

not partition the input size into pieces that were small enough to be handled efficiently, and 

more threads need to be generated to further partition the workload.  

     To dig a little further into where the performance differences come from when using these 

two different versions of algorithm, a few snapshots on resource monitor were captured while 

running the program:  

 

The first snapshot was captured from the resource monitor when the sequential version was 

running the program, and it can be seen clearly that not all 8 cores were fully utilized. Instead, 

the program task was migrated from one core to another and being executed sequentially 

through time. In comparison, the second snapshot shows that the asynchronous version has 

managed to keep all 8 cores busy from the get-go by utilizing all the available resources, which 

explains why it leads to an overall better performance.  

     Conceivably, one common way to justify the fine-grained parallelism for a particular input 

size is to test it through different sets of cores. Such a test can be done and represented in a 

chart as follows, in which the input data size is a fixed 100,000,000. 
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According to the test, the biggest performance boost occurs when the first thread got 

introduced and the algorithm started to run asynchronously with half of the workload, which 

cut down the execution time to less than half of the original time. As more threads starting to 

get introduced into the execution, the execution time continued to decrease and finally 

reached the bottom of the chart at the partition size of 4. After that, the execution time quickly 

started to rise up and became more stable toward the end even though the partition size gets 

increased drastically. Combined this finding with the results from the previous test, it can be 

ŎƻƴŎƭǳŘŜŘ ǘƘŀǘ ŜǾŜƴ ǘƘƻǳƎƘ ǘƘŜ ƳŀŎƘƛƴŜ Ŏŀƴ ǇǊƻǾƛŘŜ ŀǎ Ƴŀƴȅ ŀǎ у ŎƻǊŜǎΩ ŦǳƴŎǘƛƻƴ όƛƴŎƭǳŘƛƴƎ 

virtual cores), 4 is the find-grained partition size for this particular input size, which also 

happens to be the number of physical cores the machine possesses. When the partition size 

equals the number of physical cores of the testing machine, the program is practically executed 
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Boost Library Performance 

One major advantage Boost library bring to the table is that it supports continuation of future 

via boost::future<>::then(). Future continuation allows one asynchronous operation, upon 

completion, to invoke a second operation ŀƴŘ Ǉŀǎǎ ǘƘŜ ŦƛǊǎǘ ƻǇŜǊŀǘƛƻƴΩǎ ǊŜǘǳǊƴ ǾŀƭǳŜ to it as 

input. The current C++ Standard does not allow one to register a continuation to a future. With 

boost::future<>::then(), instead of waiting for the first asynchronous operation to complete, a 

Ŏƻƴǘƛƴǳŀǘƛƻƴ ƛǎ άŀǘǘŀŎƘŜŘέ ǘƻ ǘƘŜ ŦƛǊǎǘ ƻǇŜǊŀǘƛƻƴΣ ǿƘƛŎƘ runs in the same thread as the first 

operation. Future continuation helps to avoid blocking waits or wasting threads on pooling, 

which then greatly improves the responsiveness and scalability of a program. 

     During the first asynchronous implementation of the prefix scan algorithm, two For loops 

were used to generate the future instances and the thread pool while one For loop works 

between them that calls the std::future.wait(). This middle step was necessary by then because 

the second asynchronous operation has to wait for the first operation to complete and produce 

intermediate outputs before it can continue. However, this is a not very work-efficient design 

because by the end of the first asynchronous operation when std::future.wait() was called, all 

previously generated threads would have to join the main thread, and by the time the second 

operation started, the main thread had to re-generate new future instances and a new thread 

pool, and re-allocate memory for them, even though the new threads literally were just a 

άŎƻƴǘƛƴǳŀǘƛƻƴέ ƻŦ ǘƘŜ ƻƭŘ ǘƘǊŜŀŘǎΦ ¢Ƙƛǎ ƛǎǎǳŜ Ŏŀƴ ōŜ ǎƻƭǾŜŘ ōȅ ǳǎƛƴƎ boost::future<>::then() and 

the new implementation snippet looks like following: 
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     A few changes were marked with comments on this snippet: first, the For loop in the middle 

were removed and its function were replaced by boost::future<>::then(); second, the 

calculation for intermediate outputs were also moved under the second asynchronous 

operation because this design does not guarantee that all the intermediate inputs were 

produced by the time the second operation began, therefore each thread has to at least make 

sure its previous threads have all finished. Aside from that, it can be noticed that the new future 

instances do not call future.wait() because it is defined for boost::future<>::then() that each 

continuation will not begin until the preceding one has completed, which practically chains the 

/* for (auto threadNum = 0; threadNum < hardware_threads - 1; ++threadNum) 

vec_f[threadNum].wait(); */  

//This step above is removed and replaced with future.then() 

 

for (auto threadNum = 0; threadNum < hardware_threads - 1; ++threadNum){ 

    boost::future<int> f2 = vec_f[threadNum].then([&intermediate_input, &intermediate_output, &vec_ret, 

threadNum](boost::future<int>&& f){ 

        if (threadNum != 0) 

       { 

            /*this following intermediate step is moved to here from main thread because  

            It has to wait for all previous thread to finish before getting invoked.*/ 

            inclusive_scan(begin(intermediate_input), end(intermediate_input), back_inserter(intermediate_output));   

            for_each(begin(vec_ret[threadNum]), end(vec_ret[threadNum]), [&](double& d){ 

                d += intermediate_output[threadNum - 1]; 

            }); 

        } 

        return 0; 

    }); 

    vec_f_continue.push_back(boost::move(f2)); 

} 


