Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

Final Project Report

Implementing Asynchronous Prefix Scan
Algorithm in HPX Execution Model

Submitted by
Chen Guo

Major Professor:
Prof.Hartmut Kaiser

Committee Membes.
Prof. Evangelos Triantaphyllou

Prof. Feng Chen

LSL)

Department of Computer Science, Louisiana State University

10/19/2014

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

Acknowledgements

| am pleased to acknowledge Prof. Hartmut Kaiser for his invaluable guidance during the course
of this project work and for being incredible mentor for me both in the classroonarttie
research field.

| also extend my sincere thanks to Pr&vangelos Triantaphylland Prof. Feng Chen for
serving the committee members of this project. Their continuous suppooughout the
project plays an important role that keeps me going.

Last but not least, | am grateful for my wife Yao Wei and myytaar-old son Aaron. They have
always been the source of my motivation and the origin of my inspiration. | thank god every day
for bringing them to my life!

October 2014 Chen Guo

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

Contents

'Y Ybh2 [95D9a9b¢{ XXXXXXXXXXXXXXXXXHKEKXXX X
I hbeCIODbCE{ XXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXA]
CHAPTERL:b ¢ wh 5| / ¢ L. XXX X X X X KKK X X X XXRK

h29w+xL 92 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXPRXXXXX
.1/ YDwh | b5 !'hb5 ahe¢L£! CLADBXXXXXXXXXXXXHMXXXXXX
h. WO/ CLEIXXXXXXXXXXXXXXXXXXXXXXXXXXXXBDOEXXXX
a9¢Cl h5h[hD, XXXXXXXXXXXXXXXXXXXXXXXXXXXPHPXXXXX

CHAPTERZ:h h[59 {/ wL XEXKKXXXXXXXXXXXXXXXXX)

9btLwhba9b¢ !' b5 599 htLbD t[! ¢ChwaXXXXXXXXX
C++14 ¢! b5! w5 [L. wlw, XXXXXXXXXXXXXXXXXEBXXXXXX
.hh{¢ [L. wlw, XXXXXXXXXXXXXXXXXXXXXXXXBXXXXXX
't 9-9/ 1 ¢Lhb ah59 XXXXXXXXXXXXXXXXXXBXXXXXX

/11Tt ¢9w oY ! [DhwL¢l a 59{LDb !'b5 L@&@t[9a9

{9v] 9bc¢cL! [t w9 CLXXXMXXMXEKKRKIEKIKKXPX X X X X X XXKEPE X X X X
PARALLEL PREFIX SCAN X X X X X X X X X X X X X X X X R RRKRKEIK X D
ASYNCHRONQUS® ! w! [[9 t XXX X X{X/XIXBXXK X X X X X X XX X X X X X

/1T 1t¢9w nY toOwChwa! b/ 9 1 b! [, {L{XXXXXXXX

PARALLELISM CANBE[@K EXBRKX X X X X X X XXX XXX XXX XX XZHKXX XXX
{¢! b5 w5 [L.w!w, to9wChwa! b/ IXXXXXXXXXKHEXXXXX
.hh{c¢ [L.wlw, t9wChwa! b/ IXXXXXXXXXXXXAHOXXXXXX
It 9-9/,¢Lhb ahb59[t9wChwa! b/ 9XXXXXXIBXXXXXX

CHAPTER BPPLICATION ANEDNCLUONSX X X X X X X X X X X X X X X X X X & d

ltt[L/V'¢Lhb hC t!w![[9] tw9CL- {/!bXXEXXXXXX
I hb/ [{Lhb XXX X XXMM X XXX XXX XXX X XEKKXKIK X X X >
FUTURE DIRECT#DE XXX XBOHKXXAX X X

WICIOWIOD/ 9 XXXXXXXXXXXXXXXXXXXXXXNXX X X X X

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

Chapter 1. Introduction

Overview

This reportdescribes andliscusses therocess of seeking a woeficient design for the
parallelprefix scaralgorithm that would fit into the HPX (High Performance Parallex) execution
model for C++ users, and tl@alyticresuls of the work done during the procest is part of
the HP>project that is ongoing within the Center of Computation and Technology and the
STEIARGROUP, which aims to provide a general purpose C++ runtime system for parallel and

distributed application development of any scale.

Background and Motivation

Algorithm designersvith years of experience often knows how to rely a set of building
blocks and on the tools needed to put the blocks together into an algorithm, and many of the
parallelalgorithms eventually fall back to sequential algorithms to lookoiailding blocks and
tools neededPrefix scamlgorithm, also commonly known asefix sum is a useful building
block for many algorithms including searching, sorting, and building data structures. Being able
to run prefix scan algorithm in parallel gita software programmers and algorithm designers
more flexibility and scalability when it comes to processing a large amount of data in parallel or
designing otheparallel algorithms that reliekeavilyon prefix scan algorithm to improve their

work-efficiency.

While the research on implementing parallel prefix scan algorithm are nothing new, the

novelty ofmy project igo search and identifa design pattern that runs the algorithnot only

4

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

in parallel, but alsasynchronously in order to fully utilize tltemputingadvantage brought by
multi-core CPU devieeHaving determined the design pattern to use, my project takes the next
step and implements the asynchronous prefix scan algorithm with several compatgitnatey
tools given a variety of choices in hand, including C++ standard library, Boost library, and the
HPX execution model, a general purpose C++ runtime system for parallel and distributed
application development of any scaleompared taconventionalexecution modelsHPX allows

me to desig and implement theprefix scaralgorithm not only in parallel, but also in an
asynchronous fashion so that the risk of "data race" or "broken invardunthg the execution

is significantly reduced, and muttore ®U can reach its full potential to optimize the process

time for large scale of datahen using this algorithm

Objective
The final goabf thisprojectis twofold:

1. Search and identify a wowfficientway to design an asynchronous versiorha prefix
scanalgorithm and prove its superioritgn computing efficiencipy comparing the
execution time against those of tteequential algorithnmand theparallel algorithm

2. Attempt to implement the &orithm using several compatibfgogramming tools, and
eventudly include itin the HPX Exaition Model such that developers can use it as a
cornerstone for designing and building systema time efficient mannerand algorithm

designerscanfurther apply itto designing other parallel versions of generic algorishm

Methodology

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779
To achieve the abowgoals, a series of methodologged to befollowed:

1. Designing and implementirte sequential version of thprefix scaralgorithm that can be
applied to any container type that has an input and output iterator, which shall serve as the
building block for parallel and asynchronous algorithm designs.

2. Based on the sequential version of algorithm, design and implement thelasymusly
parallelprefix scaralgorithm usingadditions from theBoost library, and compare its
performance withthe synchronous version.

3. To further improve the performance, extending the previous design by utilizing APIls
provided by HPX execution mod€&b do thatthe code from the previous step need to be
Y2ZRATASR YR NXAGNHzOG dzZNBR (0 prin€ipey F2NY G2 GKS

4. Comparing the performance differences in terms of execution time, and analyze the reasons
for those differences based ongalrithm designs.

5. Briefly specifying how the parallptefix scaralgorithm can be utilized to simplify and

improve the design of other algorithms including quick sort and unique sort.

Chapter 2: Tool Description

Environment and Developing Platform

This project is implemented and tested using a machine with Windowslft @perating
system, and an 17 Intel CPU that has 8 Cores and 32GB RAM. This environment is intended to

provide theprojectapplication with sufficient computation power foneasuriry its

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

performanceunder large scale of dat@hewhole applicationprogramis written in C++, and

the IDE selectetb compile and buildhe source code is Microsoft Visual Studio 2003

reason C++ was chosen as thetgtanguage for im@menting this pogramis because C++ is a
lowf S@St O2YLIX ASR fly3dzr3ST gKAOK ft2ga AL G2
making it one of the fastest languages in the world when optimized. Such language is more
suitable for programs like device driverwery high performance programs that really need

access to the hardwar&ince the main objectivef this programis to searctand identifythe

design that brings better computing performance, it makes sense to choose-lavew

compiled language like €+o implement the algorithnover some other objeebriented

programming (OOP) languages such as Java or C#, which relies em-éipustcompiler (JIT
compiled) and involves quite a lot boxing and unboxing of object that takes extra CPU resources

and time.

As for Microsoft Visual Studio 2013, it is chosen as the IDE due to its user friendly interface
design and the full support of C++ standard library, which makes it very convenient and

powerful platform to write, compilebuild, and debug code.

C+14Standard Library

C++14 is the informal name for the most recent revision of the C++ ISO/IEC standard,
formally "International Standard ISO/IEC 14882:2014(E) Programming Language C++". C++14 is
intended to be a small extension over C++11, featumiagnly bug fixes and small
improvements, and is tlerefore the standard library upon which this prograsrbuilt C++14

standard library provides all the necessary tools needed to implemenpriiex scan

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

algorithm, and it comes with a full support of ritthread and asynchronous functions. That
being said, C++14 standard library has its limit in terms of +#ihuktad optimization and
asynchronous computing capability, which is why the following two additions are introduced

into this application.

BoostC+ Library

As the name suggest, Boost C++ libiary set of opersource peerreviewed portable C++
fAONIF NASa (KIFIdG FNB AYyUuSyRSR G2 3IAQS /bbb aidl yR
structure that C++ supports, includisdinear algbra, pseudorandom number generation,
image processing, regular expressiamsif testing, and of coursenultithreading.Many of
. 22a0Qa F2dzyRSNE NBX 2y (KS /bbb adlyRIFENRa 02Y
safe addition for C++ standard l#sy. One major advantage of Boost library is that most of its
libraries are header based, consisting of inline functions and extensive use of templates, and as
such do not need to be built in advance of their uUSempared to C+standard library, Boost
libraries offer @F NASGe 2F FSFGdzNBa GKIFIG aAIYyATFTAOLF YO

computing capability.

HPX Execution Model

As usefubs Boost C++ library can toe this applicationthere is a tradeoff in computing
performance. Since thBoost C++ library has a heave rely on the use of templates to build its
library, the untime performance receives a penalg it generally takes a much longer time for
the compiler to locate and identify the correct template to use from the massive templa

pools which creates barriers to high level of scalabilitg.a result, HPX (High Performance

8

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

Parallex) execution model was introduced as the second additionalddoither improve this

LINE I NI YQ& provitlirighPsivithhaieicondedised teplate poolandrestrudured

algorithm implementation. RX airs toprovide a portable and highly optimizguaogramming

model which smartlytilizes the available resources to achieve unprecedented levels of
scalability. Since the HPX libyastrictly adhers to the C++18tandards anteverages the

Boost C++ libraries, it leads to a smooth transition for someone with C++ and Boost background

to use

I . Algorit . {1mp] .

Sequential Prefix Scan

Sequentiaprefix scaralgorithm is a one of the most fundamental and widely used
algorithns in objectoriented programmingnd algorithm designits basic form is composed of
two sequences of numbers and a binassociativeoperaor: one input sequence of numbers
{(XO, XL, XX XZ-YY YR Fy 2dziiLddzi &SljdzSyO0OS 27F ydzyo SN&
same size as the input sequence. In the most common sceniagi®jnary associate operator
S isreplaced withan addition which would leado an algorithm also known gaka)prefix

sunsin whicheach output number is the sum of all the psehumber in the input sequence.

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

For instance, the prefix sums of the natural numbers are the triangular numbers:

Input 1 2 3 4 5 6 XX ®

Output 1 3 6 10 15 21 XX®

To sum up this bas prefix sum algorithm, we get the formul[i] = Y{iL] + X[i] While this
formula looks rather trivial, it forms the basis of the higloeder function ofscanin functional

programming and the parallel version.

Before the higheorder function get discussed, one thing needs to be noted ishafix
scanalgaithm is made of two different versiongclusive prefix scafakainclusive scanand
exclusive prefix scgakaexclusive scgnThe only difference between these two versions is
whether each result in the output sequence includes the corresponding imperand in the
partial operation.For instance, this previous example we see is an inclusive scan because each

result includes the corresponding input operand in the partial sum:

Input(X) 1

Output(Y) 1 |,

3 4 5

XXo®

Wi DN
|

[
N{F—o®

5 1, 21 XX ®

In comparisoneach result in the output sequence does not include the corresponding input

operand under the exclusive scan algorithm, and the results would become:

Input(X) 1 2 3 4 5 6 XX ®
Output(Y) 0 L ,* —*3_|,™ _| 210 _ | »15 | *XX0®

It does not require much attention to notice that the initial output value in the exclusive scan

example shown above is replaced with aMdich does not provide user the necessary flexibility

10

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

duringthe computation. Also like mentioned above, the higloeder function of scan requires
more computing capability than addition operator. Therefore, extending the current algorithm

to a more genealized version oprefix scarproves to be necessary.

In the more generalized version, two new parameters are introduced: the binary associative
operations which takes two arguments of the same tyfad an initial valueThe binary
associative opetion$ can be either addition, multiplies, or even Boolean operation such
as maximum or minimum. The initial value is used to initialize the first result in the output
sequence, and it works both inclusive and exclusive scan algorithm. For instance, & th
initial value is set to 3, the previous examples shown above would each generate a different
set of output sequence:

Inclusive sums

Input(X) 1 2 3 4 5 6 XXo®
| | | | | |
Output(Y) 4 | ,6 (9 1, 13 | ,18 |, 24 X X ®
Exclusivesums
Input(X) 1 2 3 4 5 6 XX o
Output(Y) 3 | ,* %6 _1,*0 _| 213 _ | 218 | *XX0

Considering these previously discussed features and the fact that this parafiel scan
algorithm, when falling back to sequential execution, should simulate the flexibility of a generic
algorithm in the C++ standard library, the final implemermatshouldwork with anycontainer
type that possessesn input and an output iterators, such as array or a linked list. As a

result, the sequentigprefix scaralgorithm was implemented as follows:

11

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

template<typenamernputlterator, typename Qutputiterator,

typename 'T-=istditerator traits<inputlterator>::valuep type,

typename BinaryOp = std:plus<T>>

Outputlterator exclusive: scan(inputlterator first,inputlterator last, Outputiteratest,
T init =1T\(): BinaryOp-op=BinaryOp())

{
for (/**/; firsti!= last; (void) ++first, ++dest)
{
*dest =iinit;
init = op(init, *first);
}
return dest;
}

template<typename inputlterator, typenam@utputlterator,
typename 'T-=istditerator traits<inputlterator>:ivaluep type,
typename BinaryOp = std:plus<T>>
Outputlterator inclusive: scan(lnputlterator first,lnputlterator last; Qutputiterator dest,
T init =1T() > BinaryOp-op=BinaryOp(){
for (/**1; firsti!=last; (void) ++first,++dest)
{
init = op(init, *first);
*dest = init;
}

return dest;

}

A few key points to be noted about this algorithm:
1. The input and output contairreypes are deduced by templates to work witlte most

primitive iterator typesinput and output iterators;

12

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

2. lterator_traits<Inputlterator>::value_typis used to predefine the typeTthe algorithm can
work with, which is the initial value type. It specifies tidiy defaulthas to be a type that
can be pointed at and dereferenced by an iterator;

3. BinaryOp which represents the binary operatidype, isalso by default std:plus<T>
operation that takes two arguments withtype.

4. |Initial valueinit and binary operatiorop are supplied with default argument valu&g¢)and
BinaryOp()each of which represents an instance of its tyjmethe case where thee two
arguments are not specified at the point of invocation, the default argument values will be
used.

5. Within the for loop,(void)casts the result of+firstwhich prevents any possibly defined

comma operators (i.dnputlterator::operator,() from beirg used.

While the sequentigbrefix scaralgorithm is quite straightorward to use and easy to
comprehend, it is not quite a timefficient way to produce output results when the input
number sequence becomes really large. The cause for thedsbown is simple: eacbutput[N]
has to wait for tke result frompreviousoutput[N-1] to compute before the algorithm can
continue, and thus the computing complexity of the computatio®{8l).As multicore CPU
becomes increasingly popular among the industry, the need for designing parallel algorithms
that would approach the efficiency of the sequential algorithm, while still taking advantage of

the parallelism in the CPU is obvious.

Parallel Prefix Scan

The paralleprefix scaralgorithm that is currently known and used by most programsner

and algorihm designers is the one presented by Prof. Blellock in b@8@d on aralgorithmic

13

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

pattern that often appearsin parallel computingbalanced treesThis pattern aims to build a
balanced binary tree on the input data andmpriseswo ésweeE phases; up sweepand
down sweep; to produce theprefix scarresults As a result, ainary tree withN input nodes
hasd =log2(N) depthswith 2*d nodesat each depthin theup sweepphase the algorithm
traverses the balanced tree from terminal nodes to root nedenputing partial operatiomt

internal nodes of the tree. This phase looks as followg#&vallel prefix sumalgorithm:

range 0,8
sum 76
depth 2 / fromleft \
range 0,4 range 4,8
sum 36 sum 40
fromleft fromleft
depth 1 / \ / \
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft fromleft fromleft fromleft
depth O
r 0,1 r 1,2 r 23 r 34 r 4,5 r 56 r 6,7 r 7,8
6 S 4 S 16 (|S 10 (s 16 (s 14 (s 2 s 8
f f f f f f f f
input | 6 4 16 10 | 16 | 14 | 2 | 8 |
output | | | | |

It can be seen from thbalanced treebove that at each depth, the sum of two internal
nodes were computed to generate oneper-level node until the sum of the root node is
computed, which also represents the sum of all the input sequence numbers. It is also worth
noting that each nodés made ofa special data structure consisting of three property values:

indexof the input sequencesumalfter each depth, anffomleft value that shall be used during

14

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

the down-sweepphasecomputation This special node structure and thp sweepphase

algorithmcan beimplementedin C++as follows

[[Tree node sstructure//
Class TreeNode
{
Public:
TreeNode(): sum(0); froleft(0), index(0) {}
int sum;
int fromleft;
int index;

}

llup sweep phaserimplementation//
void up_sweep pphase(std::vectofreeNode>& nodes)
{
size it-size =nodes:size();
for (size :tdepth =0;depth <=:std::log2(sizd) ++depth)

{
size tpartition_size = (sizel) % pow(2; depth+H) 1;
int k =0;
while (k<size 1)
{
nodes[k-+pow(2; depth + 1)1].sum +=nodes[k +pow(2; depth)].sum;
k +=(partition :size;
}
}

}

Theup sweeplgorithm firstfor loopsthrough each depth. Within each depth, the partition

size is calculated based on the size of the input sequence and the current depth. This partition

size is then used in the nestedile loop to locate thespecificpair of internal nodes for the

sumcalculation in order to produce the nodes of the next depth. Aside from the obvious

difference in algorithm design, the most notable difference between the sequential version of

the prefix scarand this paralleVersionis that the sequential version usetemplate>to

15

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

deduce the type of input sequence container it accepts as arguments, and any container type
that possessemput andoutput iteratorsis a valid argument type, while the parallel version

only accepts container types that posseasdom access iteratomuch astd::vector<>The

reason for therandom access iteratas because of this step:

9 Xnddes[k + pow(2, depth + 4)].sum += ndes[k + pow(2, depth)1].sum;X ® Y

This particular calculatiorequires the container indicas be advanced tepecificpositionsby

a certain distance, which is beyond the capabilitynplut and output iteratorsas they can only

be incremented by ongosition during each iteration.

Thedown sweephase algorithm uses the same concepts asubhsweephase as it traverses
back down the tree from the root node to the terminal nodes, using the partial sums from the
up sweephase to produce theutput scan resultsThis phase looks as follows for the previous

prefix sumexample:

range 0,8
sum 76
depth 0 / fromleft 0O \
range 0,4 range 4,8
sum 36 sum 40
fromleft 0O fromleft 36
depth 1 / \ / \
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft 0O fromleft 10 fromleft 36 fromleft 66
depth 2
r 0,1 r 1,2 r 4,5 r 56 r 6,7 r 7,8
6 4 S 16 s 14 s 2 s 8
f O f 6 f 36 f 52 f 66 f 68
input | 6 | a4 | 16 | 10 | 16 | 14 | 2 | s
output | 6 J 10 l 26 | 36 | 52 | 66 | 68 76

16

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

Thedown sweephasebegins by assigning 0 to tfmleft value of the root node, and on
each step, each node at the current level passes its fowmleft value to its left child, and the
sum of itsfromleft value andhe sumvalue of its leftchild to its right child until théromleft
value of all the terminal nodes were computed. To producefih& output sequence, it
requires one more step to calculate tsam of the original input value for each noded its
correspondingrromleft value after thedown sweepphase. Thelown sweep phasean be

implemented in C++ as follows:

[[down sweep jphaserimplementation//
void down_sweepp phase(std:vector<TreeNode>& nodes)
{

size t-size =nodes:size();

for (size :tdepth =:std::log2(size)l; depth >=0; ++depth)

{
vector<TreeNode>:isize,type partition: size =(stke% pow(2; depth + 1)+ 1,
int k =0;
while (k>:sizel)
{
nodes[k +pow(2; depth)1].fromleft = nodes[k + pow(2,-depth +-1}].fromleft;
nodes[k-+pow(2; depth + 11].fromleft +=nales[k +pow(2; depth)1].sum;
k +=(partition :size;
}
}

}

Despite the fact that the parall@refix scaralgorithm describedbove has been well known

for a long time and widely used to improve computing efficiency on modern parallel hardware

such as a GPU, there exists several limits about this algorithm design that make it not a
desirable choice for the HPX execution moékt, the restriction on the type of input

containerand iteratoisthat the algorithmcanacceptmakes it not very versatile caitthte as all

17

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

the generic algorithms in Cstandard libraryare expected to have the capability of deducing
their argument typs through the use oftemplate> While HPX is yet to become a part of the

generic algorithm library, it aims fgrovide the same versatility

Second, this algorithrdepends on two special data structure®alanced treeandtree node
¢ to accomplish the implementation. €hpalanced trealata structure requirestte size of input
sequencdo be{X: X* 2 to the power of N, N>@r the algorithm to worlproperly, which is
not preferable for applications that may generate random number of input dakaler
scenarios where ingt size is random, the user has to find the biggesn the power of Nvithin

the input size first by converting the input size to its binary number format via a function below:

std::vector<hool> toLbinary(intinum)
{
std::vector<hool> numo binary;
while (true)
{
int remainder-=num%:2;
bool binary-=remainder== 0 ? false.:true;
num /= 2;
num_binary:pushb back(binary);
if (num ==0):break;
}
std::reverse(numbbinarybegin(), num nbinary.end());
return num_binary;

}

By invoking this converting function, an integer number that represents the size of the input
sequence shall be converted to its binary format and storedstdavector<bool>ontainer.
For instance, numbe2000is converted td1, 1, 1, 1, 1, O, 1, O, O, O} in which the first 1
represents2°10 = 1024and also the bigges to the power of Nvithin 2000 The paralleprefix

scanalgorithm shall work with the first024input elements first before moving on to the

18

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

second bigges? to the power of Nvithin 2000,which is512 This iteration continuesoson and
so forthuntil the size left is too small to justify a parallel algorithm and shall be processed
sequentiallyNot only does this lead to abundas¢paration and iteration among calculation, it

isalso quite tricky to justify the point where it should start processing input sequentially.

Last but not least, thiparallelalgorithm practically states that it processes two elements per
thread, so the maximum size of the input sequence #igorithm can scan is determined by
GKS YIOKAYSQa KI tNRmakinN® arralCszéNthissaigariinh gads8ah on an
NVIDIA 8 Series GPU is 1024 due to hardware limit. Given that the initial input size 512024,
threads need to be generated tte first depth for the parallel computatiqrwhich could lead
to aperformance hit due to the issue @verhead(the issue obverheadwill be discussed in
more detail inthe next chapter) For HPX execution model whose main target is to offer
scalabiliy for large size of data, this harsh limit on maximum input sliearly does not fit into
its schemeAfter mnsidering all three factors discussed abavés obvious thathis version of
parallelprefix scaralgorithm does not provide the necessary satility and scalability that HPX

envisioned for its algorithrdesign.

Asynchronously Parallel Prefix Scan

The final version of the parallptefix scaralgorithm used in HPX should be one that
conforms to the C++14 standard proposal, providestyipe deduction capability of a generic
algorithm, and proves to be workfficient when dealing with a large arbitrary number of data.
Given these requirements, the best possible solution seems to be falling back to the sequential

version ofthe algorithmcreated in the first section anfirst handlingeach partitionof the input

19

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

sequencdndependently, and ten compileall executions asynchronoudly compute the final
results using a key feature from the C++ standard library catbeduture<>Afutureis an

object that can retrieve a value from some provider objects or asynchronous operations and
store it in a memory place calletharedstate. Whenever the value in theharedstateis ready

to be retrieved, theuture object would notify the creator abhe asynchronous operation and
allow it to use a variety of methods to query, wait for, or extract a value fronfuhee object.

By creating duture instance via the AlBtd::async(and specifying the execution policy to be
std::launch::asynca newthread is creatd each time on top of the ongoing threém execute

the operation asynchronouslyheactual implematation in C++ looks as follows:

vector<future<int>>wvec, f;.vec f2;
vector<vector<double>>:vec:ret;
vector<double>rinput,intermediaten inpuntermediate_coutput;

int hardware_ithreads = thread::hardware..concurrency/(}
vector<double>:size /type-partition :size = input:size() / hardware -thre/guts;
vec_ret:resize(hardwarehthreads);
intermediate_input:resize(hardware threads);

for (auto threadNum-= O; threadNurmhadware_threads 1; ++threadNum)
{
future<int> f =-async(launch:asynec, [&vec. ret; &input;:&intermediate input,-threadNum; partition) stae]()
vector<double> sequential-ret;
sequential rret.reserve(partition. size);
inclusive_sscan(begin(input) +threadNum#*partition: csize; begin(input) + (threadNum: +r1)*partition_size,
back inserter(sequentialcret));
intermediate_input[threadNum} =sequential- ret:back();
vec_ret[threadNum} ='move(sequential::ret);
return O;
D;
vec_ffipush bback(maove(f));

}

20

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

vector<double> sequential,main;
sequential rmain.reserve(partition :size);
inclusive sscan(begin(input) #+:(hardware: thread¥*partition_size -end(input), back, inserter(sequential: main));
intermediate_input[hardware threadsl] = sequential-main.back();
vec_ret[hardware (threads1] = move(sequentialnmain);

for (auto threadNum-= 0; threadNum'< lolavare threads 1; ++threadNum)
vec_f[threadNum].wait();

inclusive sscan(intermediate. input:begin(); intermediate (input.end(),back inserter(intermediate. .output));

for (auto threadNum-= O; threadNum/< hardware: threads ++threadNum){

future<int> f;

if (threadNum'!=0)

{

f = async(launch::async; [&vec! ret; threadNum;: &intermediatep outpetif
for_each(begin(vec cretfthreadNum)); end(vec: ret[threadNyf#](double& d){
d +=lintermediate o output[threadNuml];

D;

return 0;

1;
vec f2.push_back(move(f));

}
}

for_each(sequentialrmain:egin(); sequential:imain.end(), [&](doublegvad)d{
d +=iintermediate coutput[hardware hthread2];

D;

for (autoi =0; i-<vvec f2.size(); ++i)
vec_f2[i].wat();

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

Before the first loop, the codabove first figures out how many cores the machine provides
by callingthread::hardware cconcurrencyhich representshe maximum threds the code can
ISYSNIGS G2 I OKA S @ Sunning tNdpBogradt. Diking thSfirshidopy; an 6 K Sy
instance of stdfuture<int>is created for each iteration by callistd::async(Wwith alambda
functionin whicheach partitionof the input sequene is calculated independentiyith an
sequential version ahclusive_scan(jand then thisstd::future<int>instance is pushed into a
vector in sequence. One thing to be noted is that instead of caliegf.push_back(finove(f)
wassent as the argument. This is because #itlire class does not provide a copy constructor
and eachfuture instance is unique, and thus cannot be copied but only moved by reference.
Another thing to be noted is that onljhardwarec 1) number of extra thheads were created,
and this is because the main thread that is currently running this program will also be used to
handle part of the partition, which is what happened next in the code. After the execution from
the main thread, the program wait for eachread generated during the loop to finish by
callingstd::future::wait() The result§rom each thread and the main thread were then used as
intermediate input to calculate the intermediate output for each thrdddwhich were later
used as input to calcate the final results for thread\+1).This process in practice works as

follows:

Threadl Thread 2 Maihréad
Inputs: 12345 ||6 7 8 9 10|l 11 12 13 14 115

Outputs: 1:3:6/1035 |56 13 21080)40 ||1 1 23 36(5D 65

Final OQutputs: 1k 3 6010:15 Y1 28 36445 5% 66 78911105 120

22

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

The advantage of this asynchronous version of algorithm is that each thirezding the
main thread runs its own calculation asynchronouslithout affecting or waiting for each
other.! FGSNJ SIFOK I RRAGAZ2Y I GKNBIFIR FTAyAakKSa Ada
AKFNBR adlFGdSz YR GUKS YIFIAYy UGKNBIFIR t221a Aylaz2
other threads before it pgceeds.Theoretically, this design pattern cuts down the execution
time based on the numdr of cores the machine offers during run tinfer instance, if the
originalexecution time with sequential algorithm for the inpigtO, and the machine has 8
cores the asynchronous algorithm, in theory, should cut the execution time dovdy8as 8
all threads are running at the same timehich makes it a very wosdficient algorithm
Although in reality, the execution time for this asynchronous algorithm coelchuch longer

than O/8 due toa variety ofreasons, which is what will bestiussed in the next chapter.

Chapter 4: Performance Analysis

Parallelism Can B&L.O.W

Having determinedhe design pattern to use in HPX for theefix scaralgorithm,the work
left to be done is to make it work efficilp in HPX as parallelism can $4..0.W during actual
execution. S.L.O.W stands f8tarvation, Latencie®©verheadand Waiting for contention
resolution and is accounted for the majority of the slalewn that a program experiences.
Starvationoccurs when there is insufficient concurrent work availdblethe hardware to

maintain high utilization of all resourcdsatenciesre used to measure the tiradistance delay

23

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

intrinsic to accessing remote resmes and service©verheadlescribes the extra wor&and
execution timerequired for the management of parallel actions and resources on the critical
execution pathwhich is not necessary in a sequential scenahiaiting for contention
resolutiondisplays the delay due to the lack of availability of oversubscribed shared resources.
Of these four possible reasons for performance stiwwn, Latenciesand Waiting for

contention resolutiomccur mostlybecause of the hardware incapability instead of software
design, and therefore are difficult to maneuver by program developers. On the other hand,
Starvationand Overheadcan be effectively controlled and reduced to a certain degree through
better algorithm designand thus become the main issues waiting to be addressed. The key to

addressStarvationand Overheads throughfine-grained parallelism

Starvationhappens when too many threads are generated at the same time while there is
not enough workload to bprocessed, and in turn creates a significant amourRarallelism
Overheadhat cannot bgustifiedo @ LINP INI Y LISNF2NXIF y OS> GKIFG AA&.
time is even longer under parallelism design than under sequential ddsigto Overhead To
void this situation, program developer has to design the parallel algorithm carefully to achieve a
fine-grainedparallelism Finegrained parallelisth & | OKAS@SR ¢KSy aGaadzad NA
threads were generated according to a specific workload sodhah thread has its hands full
processing data while the program benefits froime parallelism. Theollowing example
demonstratesthe relationship betweerstarvationand Overheadand how it can be solved

throughfind-grained parallelism.

24

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

Assumingworkload to be processs 1 million integers:

Main Thread : onethread takes300 milliseconds to process this workload,@®eerheadtime.

Main Thread| +| Thread 2 Thread 3 Thread| 4 Threadbour extra threads

were generated, therefore each thread is assigned with 1/5 of the original workload, and the
parallelexecution timeis cut down to 60 milliseconds, but each thread is actusyvingfor

more work. Meanwhile, the time it takes to generate and manage athesadis 8

milliseconds, and th®verheadime sums to be 320 milliseconds, which already surpasses the
total execution time when running a single thread. This parallelism obviously cannot be justified

and requires a bettegrainedsolution.

Main Thread

=+

Thread Z: Only one extra thread was generated, therefore each thread is

assigned ¥z of the workload, and the parallel execution time is cut down to 150 milliseconds.
Adding the onélverheadime from generatinghread 2 the total execution time is 230
milliseconds, which is an improvement to the sequential execution. What about having two
extra threads then? The parallel execution time will be cut down to 100 milliseconds, when
adding theOverheadime for generated two more threadshe total execution time becomes
260 milliseconds, which is still better than sequential execution but worse than when only
generating one additional thread. As a result, fhree-grained parallelisnfior this particular

processwith 1 million data set ig partition.

This example implies that with the time to generate new thread being fixed, the bigger the

workload, the more beneficial it becomes to generate extra threads. For instance, if the

25

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

workload takes 3000 milliseconds to process, the 80sadbinds oDverheadime becomes

trivial and the program can benefit more from having more threads working together.

Standard Library Performance

As demonstrated in the last section of Chapter 3, phefix scaralgorithm can be fully
implemented asyohronously using some key features from the C++14 Standard Lsranyas
std::future<>andstd::async()But how does it actually perforagainst the sequential version
in runtime? A test was conducted using these two versionprefiix scaralgorithmand the
results are shown inhie following chartwhich demonstratethe performance difference

between themgiven an increasing size of datet to work with:

Prefix Scan Performance Comparison

»— Sequential ®— Asynchronous (8 cores)

160000
140000
120000
100000 90f74
80000

60000

139976

20000 281 14108 -
0 = 78453
0~ 100000000 200000000 300000000 400000000 500000000 600000000
DATA SET SIZE

18548

%)
a)
Z
O
O
LLl
)
—
=l
=
<
LLl
=
|_
z
o)
|_
=
O
LLl
>
M

It is quite clear that the asynchronous version of grefix scaralgorithm performs much

better than the sequential version according to this test. During the test, the asynchronous

26

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

version partitioned the data sets based on the maximum number of CPU cores the testing
machine provides, which is 8 cores in this casd,tans the original workload was divided into
8 pieces and handled asynchronously. It is also worth noting that as the size of the data set
increases, the improvements of execution time resulting from the asynchronous algorithm

become more significant.

Sie Sequential Run Time Async Run Time Ratio
1000000 281 188 66.9%
5000000 1469 919 62.6%
10000000 3032 1887 62.2%
50000000 14108 8453 59.9%

100000000 30064 18548 61.7%0
500000000 139976 90474 64.6%

For instance, given anput sizeof 1,000,000, asynchronous version reduced the execution
time to its 61.2%, and this number becomes®9 given an input size of 500,000. When the
input size gotdoubled to 100,000,000, the reduction percentadgggan to rise to 61% And

yet when the inpit size was increased to 500,000,000, the improvement becavealess
significant and was back to &%.0ne major assumptiowas proved during this test: while the
asynchronous version generally performs better than the sequential version, the bedt resul
was produced when the workload was partitioned intéree-grained parallelismSince the
partition size is set to be 8 in this test, when the workload size was as small as 1,000,000, the
Overheadyenerated from additional threads compromised th#vantage thaparallelism

provides. Obviously, this advantage from parallelism was maximized whenottkéoad size

was increased to®000,000, which mearappearst®d A Yy F | O hefihelp@ided y 2 { 0
partition size that best utilizes the CPUasces when the input size %,000,000 for this

algorithm. So what happened after that? Talgorithmperformancestarted to go dowrwhen

27

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

the input size got further extendedvhich may imply that the current level of parallelism did
not partition the input size into pieces that were small enough to be handiffitiently, and

more threads need to be generated to furtheartition the workload.

To dig a little further into where the performance differences cdnoen when using these
two different versions of algorithm, a few snapshots on resource monitor were captured while

running the program:

Saquential Version Snapshot

CPUD 100% 7 cpy 1 100% 1 cpu2 100% CPU3 100% 1 CPU4 100% 4 CPUS 100% 4 CPUG 100%

0% 0%

Asynchronous Version Snapshot

CPUO 100% 7 CPU1 100% 9 CPU2 100% - CPU 3 100% - CPU4 100% 4 CPUS 100% - CPUG 100%

9 ; "
0% 0% 0% 0%

The first snapshot was captured from the resource monitor when the sequential version was
running the program, and it can be seen clearly that not allr@swvere fully utilized. Instead,
the program task was migrated from one core to another and beiegu@ed sequentially
through time. In comparisorthe second snapshot shows that tagynchronous version has
managed to keep all 8 cores busym the getgo by utilizing all the available resourcagich

explains why it leads to an overall better performance.

Conceivably, one common way to justify thee-grained parallelisnfior a particular input
size is to test it through different sets of cor&ich a test can be doraad represented i

chart as followsin whid the input data size is a fixéd0,000,000.
28

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

Performance Trend Based on Paritition size

35000
30064

30000 | =
25000

20000 18548
16126 9

15000 .

L]
1150f 13501
L

~

8985

10000

5000

0
a
Z
O
O
Y
)
-
=
=
<
n
=
|_
z
O
|_
=
O
Y
>
n

0
0 15 20

PARTITION SIZE

According to the test, the biggest performance boost occurs when the first thread got
introduced and the algorithm started to run asynchowsly with half of the workload, which

cut down the execution time to less than half of the original time. As more threads starting to
get introduced into the execution, the execution time continued to decrease and finally

reached thebottom of the chartat the partition size of 4. After that, the execution tirgaicky
started to rise up and became more stable toward the end even though the partition size gets
increased drastically. Combined this finding with the results from the previous test, it can be
02y Of dzZRSR GKIG S@Sy (K2dAK GKS YIOKAYS OFyYy LI
virtual cores), 4 is thénd-grainedpartition size for this particular input size, which also

happens to be the number of physical cores the machine possesses Wpartition size

equals the number of physical cores of the testing machine, the program is practically executed

AY 0 aliNXzS LI NI ffStAaYéod

29

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

Boost Library Performance

One major advantage Boost library bring to the table ig ihaupports continuation ofuture
viaboost::future<>then(). Futurecontinuation allows one asynchronous operation, upon
completion, to invoke a second operatibny R LJ- 484 (GKS FTANBRGoitadJSNI GA2Y
input. The current C++ Standard does not allow one to register a continuatiofutara. With
boost:future<>:then(), instead of waiting for the first asynchronous operation to complete, a
O2y UAydz- A2y Aa Gl GG OK®Riéthasane thrkaf asthe W3t § 2 LIS NI
operation Futurecontinuation helps tavoid blockingvaits or wasting threads on pting,

which then greatly improves the responsiveness andakdlity of a program.

During the first asynchronous implementation of theefix scamalgorithm, twoForloops
were used to generate théuture instances and the thread pool while oRerloop works
between them that calls thetd::future.wait() This middle step was necessary by then because
the second asynchronous operation hasatait for the first operation to complete and produce
intermediate outputs before it can continue. However, this is a not very wedfikient design
because by the end of the first asynchronous operation whenfatdre.wait()was called, all
previously gaerated threads would have toin the main thread, andby the time the second
operation startedthe main thread had to rggenerate newfuture instances and a new thread
pool, and reallocate memory for them, even though the new threads literally weregus
GO2yUAYydzr GA2y e 2F (GKS 2t R (i KobdSt:flRuded>:theli@nd A & & dzS

the new implementation snippet looks like following:

30

Final Project Reporg, ParallelPrefix Scann HPX Chen Guo 89-721-5779

for (auto threadNun = O; threadNum < hardware_threads; ++threadNum){
boost::future<int> f2 = vec_f[threadNum].then([&intermediate_input, &intermediate_output, &vec_ret,
threadNum](boost::future<int>&& f){
if (threadNum != 0)

{

inclusive_scan(begin(intermediate_input), end(intermediate_infhalk inserter(intermediate_output));
for_each(begin(vec cretfthreadNum}); end(vec: retfthreadNumy]); [&](double& d){
d +=iintermediate coutput[threadNuml];
D;
}
return O;
D;
vec_f_continue.push_back(boost::md{2));

}

A few changes were marked with comments on this snippet: firstFtirdoop in the middle
were removed and its function were replaced liyost::future<>::then()second, the
calculation for intermediate outputs were also moved under seeondasynchronous
operation because this design does not guarantee that all the intermediate inputs were
producedby the time the secondperation began, therefore each thread has to at least make
sure its previous threads have all finishégide fromthat, it can be noticed that the nevuture
instances do not caluture.wait() because it is defined fdyoost::future<>::then(jhat each

continuation will not begin until the precedirane has completed, whicpractically chains the

31

