
Methodology for Adaptive Active Message
Coalescing in Task Based Runtime Systems

Bibek Wagle∗‡§¶, Samuel Kellar†¶, Adrian Serio‡§‖, Hartmut Kaiser‡∗§‖
∗School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, USA

†Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA
‡Center for Computation and Technology, Louisiana State University, Baton Rouge, USA

§The STE||AR Group
¶{bwagle3, skella1}@lsu.edu
‖{aserio, hkaiser}@cct.lsu.edu

Abstract—Overheads associated with fine grained communica-
tion in task based runtime systems are one of the major bottle-
necks that limit the performance of distributed applications. In
this research, we provide methodology and metrics for analyzing
network overheads using the introspection capabilities of HPX,
a task based runtime system. We demonstrate that our metrics
show a strong correlation with the overall runtime of our test
applications. Our aim is to eventually use these metrics to tune, at
runtime, parameters relating to active message coalescing. This
method improves on the postmortem analysis techniques that
are currently employed to tune network settings in distributed
applications.

I. INTRODUCTION

As we move towards exascale computing where tens of
thousands of nodes will work together in solving complex
scientific problems, task based runtime systems become a
viable alternative to the de facto standard of High Performance
computing, MPI [1]. The success of task based runtime
systems is based on the fact that most algorithms can be
decomposed into fine grained units of work that can be
executed by the runtime system with very little overhead. A
side effect of creating fine grained units of work (tasks) is
in fine grained communication patterns when dealing with a
large scale distributed application.

Efficient communication across nodes in a cluster is largely
dependent on latency and the bandwidth of the network
as well as the overheads associated with the creating and
sending of messages [2]. If we are sending a large number
of messages in quick succession, these overheads rapidly
aggregate. In the context of a task based runtime system,
where fine grained communication is ubiquitous, efficient use
of network bandwidth and reduction of overheads introduced
by the transmission of information is vital. Any improvements
that can be made in this context have the potential to improve
the overall execution time of the distributed application.

Combining many small messages and sending them as a
larger message, (see Figure 1) is an optimization technique
that has been in use for quite some time now [3]. Coalescing
messages allows users to combine small messages into large
ones that effectively send the same amount of data but keep the
per message overheads at a minimum. Although programmers
can manually coalesce messages to optimize their applications,

Fig. 1. A diagrammatic representation of message coalescing. Individual
active messages are grouped together to form a large message at the sending
end which is reconstructed into the original individual entities at the receiving
end.

the effort required to correctly achieve this is quite high and is
practical only in small and simple applications. Recent work
such as Active Pebbles [4] , AM++ [5] and Charm++ [6], have
implemented some form of message coalescing solutions pro-
vided by runtime systems. Such solutions are largely beneficial
in terms of reducing program complexity and coding time. A
programmer would simply enable message coalescing and the
runtime would intelligently coalesce messages bound to the
same destination.

One caveat of this approach is determining how many mes-
sages to coalesce in a single message. A single message can be
defined by either the size of the buffer, number of messages or
a timeout. Since each application has different communication
patterns, a single parameter that works best for all conceivable
applications simply does not exist. Furthermore, there may be
phases in an application where communication is heavy and
heavy coalescing would be beneficial, juxtaposed to periods
of time when communication is light and sparse that would
benefit from different parameters for coalescing. An intelligent
adaptive message coalescing approach that dynamically varies
its parameters depending upon the application’s behavior
would be useful.

Recent research [6] has successfully demonstrated a basic
adaptive approach for message coalescing where different sets
of parameters for coalescing are tried during each iterative
step on an all-to-all benchmark using PICS: A Performance-

Analysis-Based Introspective Control System [7]. PICS con-
verged to a decision on coalescing buffer size in 5 decisions.
This could be improved upon by creating an advanced adaptive
framework able to monitor in real time the network overhead
due to fine grained communications. It could select efficient
message coalescing parameters based upon that information.
Such a system would be able to intelligently vary coalescing
parameters based on the phase of the application and would
provide a general solution to adaptive message coalescing for
applications that do not have a well defined iterative step or a
predictable pattern of communication.

HPX [8] is a task based runtime system with real time
performance monitoring and tuning capabilities that makes it
an obvious choice for experimentation. In order to achieve
advanced adaptive message coalescing in HPX, the following
steps need to be completed : (i) Implementation of message
coalescing in HPX, (ii) Identification of metrics and runtime
characteristics that relate to the network overhead associated
with fine grained communication, and (iii) Utilization of
the identified metrics for adaptive tuning of coalescing for
scientific applications. This work presents the first two steps
towards the overall goal of achieving automated message
coalescing.

As mentioned previously, other task based runtime systems
have the ability to coalesce messages. These include Active
Pebbles [4],AM++ [5] and Charm++ [6]. Our implementation
of message coalescing differs from these implementations in
a few fundamental ways. Currently, Active Pebbles, AM++
and Charm++ use buffer size as a means of controlling the
granularity of communication. A buffer is allocated and once
filled the message is sent. Our approach, however, is to control
the number of individual messages to coalesce. Determining
when to override messaging coalescing parameters is another
important distinction in methodology. While Active Pebbles
and AM++ normally send a message when the buffer is full,
they also support a flush method which immediately sends
the message regardless of the amount of information in it.
Charm++ has a periodic check mechanism which performs an
immediate send if no messages were sent between subsequent
checks. Our implementation of message coalescing allows the
coalesced message to be sent after a timeout. When the first
message enters the coalescing queue, a timer is set which
flushes the coalescing queue on expiration of the timer. Hence,
each instance of coalesced messages is sent out either when
the coalescing queue is full or when the timeout is triggered.
These strategies are necessary to prevent deadlocks caused by
messages not being sent due to an insufficient amount of data
or an insufficient number of messages waiting to be sent.

The contributions of this research are as follows:

1) Identification of metrics that measure instantaneous net-
work overhead and eventually could be used in adaptive
tuning of distributed applications.

2) Implementation of message coalescing in HPX which
provides significant improvement in scientific application
performance as a result.

II. IMPLEMENTATION DETAILS

A. HPX Runtime System

HPX is a C++ runtime system based on the solid theoretical
foundation of the ParalleX [9] model. It exposes a concurrency
and parallelism API that is consistent with the current ISO
C++ standard. HPX parallel applications can run on both
a single machine as well as a cluster with hundreds of
thousands of nodes. It is an alternative to the more traditional
programming paradigms such as MPI [1]. The architecture
of HPX is shown in Figure 2. The HPX threading system
employs lightweight tasks, known as HPX threads, that are
scheduled on top of operating system threads. A locality in
HPX is an abstraction for a physical node. The Active Global
Address Space (AGAS) system in HPX provides a mechanism
for addressing any HPX object globally. Each object in HPX is
assigned a Global Identifier (GID) that is maintained through-
out the lifetime of the object even if it is moved between
nodes in the system. Local Control Objects (LCOs) are used
to synchronize tasks generated by the application. The parcel
subsystem is responsible for executing a task remotely and the
Performance Counter Framework is used for instrumentation
purposes. Additional information on HPX can be found in [8].
What follows is a gentle introduction to the parcel subsystem
and the Performance Counter Framework of HPX.

Operating System

HPX Application

Threading
Subsystem

Local Control
Objects (LCOs)

Parcel
Subsystem

Active Global
 Address Space

(AGAS)

Performance
Counters

Fig. 2. Architecture of HPX consisting of Threading Subsystem, Active
Global Address Space (AGAS), Local Control Objects (LCOs) and the Parcel
Subsystem with the Performance Counter Framework interacting with each
of the subsystems for instrumentation and debugging purposes.

A parcel(Parallel Control Element) is a form of an active
message [10]. A parcel is created when a method, called action
in HPX terminology, is called remotely. The structure of a
HPX Parcel is shown in Figure 3. The destination address
is the location where the method is to be executed, action
is the method to execute, arguments are the parameters of
the method and optionally present continuations are work
that will be executed after the main method in the parcel
terminates. In order to transmit a parcel over the network, a

parcel goes through a serialization process converting it into a
stream of bytes which is then sent over the wire using existing
network protocols. HPX at present supports TCP/IP and is
also able to use the MPI communications library for sending
sequences of bytes to remote nodes. At the receiving end, a de-
serialization process reconstructs the parcel from the received
sequence of bytes. The parcel is then converted into a HPX
thread and placed in the scheduler queue for execution. The
parcel subsystem is responsible for creating the parcels as well
as converting a received parcel into a HPX thread.

Destination
Address

Action Arguments Continuations

HPX Parcel

Fig. 3. Structure of a HPX Parcel. A parcel has four components: the
destination address (the address of the locality where the parcel is destined);
the action, which is the method/function to execute at the destination; the
arguments for the function; and optional continuations.

The HPX Performance Counter Framework [11] is used
for instrumentation purposes and is able to provide intrinsic
information about the state of the application at runtime. It aids
in the identification and removal of bottlenecks and assists in
debugging. Performance counters let us obtain arbitrary infor-
mation about the application across the system in a uniform
manner. Such information can then be fed into policies for the
purpose of runtime adaptivity or can be used for postmortem
analysis of the application. Furthermore, HPX allows users to
easily create their own performance counters if the existing
counters are insufficient.

B. Parcel Coalescing in HPX
The parcel coalescing algorithm is listed in Algorithm 1.

Our design revolves around two parameters. First, the length
of the parcel queue and second, the wait time. The length
of the parcel queue dictates how many parcels are to be
coalesced before being sent. The wait time dictates the number
of microseconds to wait for the queue to be full before flushing
it. Hence, coalesced parcels are sent either when the parcel
queue is full or when the wait time expires. Additionally, we
employ a limit on the maximum size of the buffer in order to
avoid memory overflow errors.

The accuracy of the flush timer is a important factor in
the overall working of the parcel coalescing module. The
flush timer is designed using Boost’s [12] deadline timer that
allows the timing mechanism to run in its own dedicated
hardware thread. This results in a resolution on the order of
microseconds. To verify the accuracy of our flush timer, we
ran a series of experiments where a timer was created and set
to expire after certain amount of time. We observed that the
flush timer fires within on average 33µs of the desired fire
time. If we were to use software threads for the purpose of
implementing the flush timer, we would have been limited by
the time slicing of the Operating System which is in the range
of milliseconds.

Algorithm 1 Parcel Coalescing
procedure COALESCING MESSAGE HANDLER

nparcels← number of parcels to coalesce in a message
interval← wait time in microseconds
s← state of arriving parcel
tslp← time since last parcel
if tslp > interval then

send parcel
switch s do

case First :
Start Flush timer
Queue Parcel

case !First||Last :
Queue Parcel

case Last(QueueFull) :
Stop Flush timer
Flush queued parcels

Another important design consideration when implementing
parcel coalescing is when to disable it. The communication
pattern of a real life application may change throughout
its lifetime. The application may generate large number of
parcels at certain points, whereas, there may be points in the
application where the number of parcels generated is small.
We overcome this hurdle by coalescing the scheduled parcels
only when the time between them is less than the maximum
wait time. This effectively disables parcel coalescing in cases
where parcel generation is sparse. It is important to disable
parcel coalescing in cases where parcel generation is sparse
because the performance would be negatively impacted as the
application will have to wait for the parcel queue to be flushed
by the wait timer.

Since parcel coalescing is beneficial in cases where
large numbers of parcels are generated, we implemented
it in the form of a plug-in rather than incorporating
it into the core of HPX. This allows added flexibility
for the user as the feature could be easily disabled if
needed. Also, parcel coalescing has been implemented on
per action basis, and can be easily enabled with minimal
change to the existing code by simply adding the macro
HPX ACTION USES MESSAGE COALESCING as shown
in annotation 1 in Listing 1.

During the course of this study, the following performance
counters specific to parcel coalescing were incorporated into
HPX:

• /coalescing/count/parcels that return the number of
parcels associated with a particular action,

• /coalescing/count/messages that return the number of
messages generated for a particular action,

• /coalescing/count/average-parcels-per-message that re-
turn the average number of parcels sent in a message
for a particular action,

• /coalescing/time/average-parcel-arrival that return the
average time between arriving parcels for a particular

action,
• /coalescing/time/parcel-arrival-histogram that return a

histogram representing the gap between parcel arrival for
a particular action.

Performance counters specific to coalescing provide intrinsic
information about the application that can be used for de-
bugging and optimization purposes. The performance counters
listed above were used for preliminary analysis of parcel
coalescing. The above counters also aided in debugging our
implementation of parcel coalescing.

III. NETWORK PERFORMANCE METRICS

This work develops metrics for measuring network overhead
of an application. In the context of this work, overhead
is defined as the time spent processing information to be
communicated across the network. This processing time we
call background work. While informative, the time spent
processing background work is insufficient to gauge the effects
network overhead on the application. An increase in time
spent on background work may only indicate a change in
application state, eg. communication phase of an application.
To understand the influence of overhead, we must look at
the ratio of background work to overall execution time. The
background work time paired with the overall execution time
of the application determines the actual influence of network
overheads. The proportion of time spent on overheads to the
overall runtime indicates whether significant improvements are
possible via a reduction of network overheads.

Parcel coalescing is useful as it reduces the overhead cost
per message. In an application that sends millions of messages
during its execution, this reduction will be extremely benefi-
cial. After implementing parcel coalescing, we analyzed its
effect on the overhead associated with sending and receiving
messages. We used two applications, Parquet [13] and a
toy application. Details about these applications are provided
in section IV. Using the Performance Counter Framework
provided by HPX, we obtained intrinsic information about the
applications in real time. This section details the metrics we
gathered to evaluate the network overheads.

A. Execution Time

We first measured the execution time while varying the
number of parcels to coalesce in a single message and the
interval to wait before flushing the queued parcels. The size
of the problem in each run was kept constant, hence the same
number of parcels were generated in each run. The difference
between runs was simply the number of messages sent as
determined by the coalescing parameters.

B. Task Duration

Next we looked at the overall time spent on executing each
HPX-thread or tasks including the overhead. We define task
duration using the following equation:

td =
∑

tfunc (1)

where
∑
tfunc is the total time spent by the HPX scheduler

executing each HPX thread.

C. Task Overhead

We then looked at the average time spent on thread man-
agement for each HPX-thread or tasks. All communication
in HPX is done via tasks. Task overhead, is obtained from
the /threads/time/average-overhead performance counter. We
calculate task overhead using the following equation:

to =

∑
tfunc −

∑
texec

nt
(2)

where
∑
texec is the time spend by the HPX scheduler doing

useful work and
∑
tfunc is the task duration as defined in

Equation 1 and nt is the number of executed HPX threads.
We observed a positive correlation between task overhead
and overall execution time of our test applications for various
coalescing parameters.

D. Background Work Duration

After establishing that task overhead has a positive cor-
relation with the overall execution time, we separated the
network related overhead from other overheads. HPX performs
network related tasks such as packaging a parcel into a
message, serialization, handshaking and locality resolution in
the form of background work. We define total time spent doing
background work as the background work duration and it is
obtained using the following equation:

tbd =
∑

tbackground−work (3)

Background work duration can be queried using the perfor-
mance counter /threads/background-work and was added to
HPX as a part of this study.

E. Network Overhead

The network overhead, obtained from the performance
counter /threads/background-overhead, is the ratio of thread
background work duration to task duration. Network Overhead
is shown in Eq. 4.

noh =

∑
tbackground−work∑

tfunc
(4)

Here,
∑
tbackground−work is the total time spent performing

network related work and
∑
tfunc is the total time to reach the

completion of each HPX thread. The network overhead per-
formance counter, /threads/background-overhead was added to
HPX as a part of this study.

In subsequent sections, we use the Network Overhead
metric defined in Equation 4 in order to measure network
overhead of our test applications. Parcel Coalescing is used to
demonstrate that the reduction of network overhead increases
overall application performance. The control parameters of
parcel coalescing can be modified which, in turn, results in a
corresponding increase or decrease of network overhead. For
network intensive applications, changing network overhead
has a demonstrable effect on the application’s execution time.

Parcel coalescing attempts to minimize network overhead by
sending larger messages across the network via aggregation
of smaller parcels into one large message. In the instance of
a high volume of parcels in a short window of time this can
significantly reduce network overheads.

IV. EXPERIMENTAL RESULTS

A. Experimental Testbed

For our evaluation, we used Marvin thin compute nodes of
the ROSTAM [14] cluster located at LSU running the 64 bit
Debian GNU/Linux kernel version 3.8.13. Each of the Marvin
nodes consists of two Intel Xeon E5-2450 CPUs providing a
total of 16 cores, 48GB 1333 MHZ DDR3 memory and 1
TB storage. We used HPX 1.0.0 [15] for the experiments. All
applications were compiled using GCC 6.3.0 and Intel MPI
2017.2.174 was used as the underlying MPI implementation.

B. Toy Application

In order to test the effectiveness of parcel coalescing on
HPX and its effect on the Network Overhead metric defined
in Equation 4, we used a toy application that sends millions
of messages containing a single complex double with no direct
dependencies between the messages. This example simulates
an application where the network overhead is high and is
an ideal candidate for testing the effectiveness of parcel
coalescing. A condensed version of the code for the toy
application is in Listing 1. It shows two nodes sending a
million messages to each other and this process is repeated
four times. We define the process of sending a million message
as a phase as shown in annotation 2 in Listing 1.
We measured the network overhead at specific phases for the
toy application using Equation 4. Figure 4 shows network
overhead vs. execution time for all sets of parcel coalescing
parameters explored in this work. The Pearson’s correlation
coefficient for our data set was 0.97 which indicates that
network overhead and execution time are strongly correlated.
We can confidently conclude that larger reported network
overhead results in longer execution times.

It is also desirable to see the relationship between parcel
coalescing parameters and application runtime. Figure 5 shows
the execution time for various values of number of parcels
to coalesce in a single messages. The fastest execution time
occurs with the largest values of number of parcels to coalesce.
This result reflects the toy application’s lack of dependency
with any other computation or communication. This is further
highlighted by our observation that changing the wait time
has negligible effect on the execution time. This is due to
the fact that the toy application generates the parcels in quick
succession such that the parcel queue is almost always filled
and the wait time rarely expires.

C. The Parquet Application

One of the applications used in the evaluation was the
Parquet [13] application. The self consistent parquet method
is a complex physics simulation. The goal is to identify pa-
rameters which control the emergence of interesting quantum

//Create Action
complex<double> get_cplx()
{
return complex<double>(13.3,-23.8);
}

HPX_PLAIN_ACTION(get_cplx,actn);
HPX_ACTION_USES_MESSAGE_COALESCING(actn); 1

//Create instance of the actions
actn act;

vector<hpx::future<complex<double>>> vec;
vec.reserve(numparcels);

//Find the other locality
auto localities=hpx::find_remote_localities();
auto other=localities[0];

int num_repeats=4;
//Repeat num_repeats times
for (int j = 0; j < num_repeats; j++)
{
for (int i = 0; i < numparcels; ++i)
{
vec.push_back(hpx::async(act, other));
}
//Wait for all the tasks to complete
hpx::wait_all(vec);

2

}

Listing 1. Artificial example application used to generate and send parcels
from one node to another.

10 15 20 25 30 35
Average time(s)

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Av
er

ag
e

Ne
tw

or
k

Ov
er

he
ad

 (%
)

Time vs Network Overhead

Fig. 4. Scatter Plot of the average network overhead per phase vs average
execution time per phase for the toy application. Each dot represents a set of
parcel coalescing parameters. Average overhead is the average for four phases.
As the network overhead decreases, the execution time also decreases. A
Pearson’s correlation coefficient of 0.97 indicates a strong positive correlation
between network overhead and runtime.

1 2 4 8 16 32 64 128 256
Number of parcels to coalesce

20

40

60

80

100

120

140

Ti
m

e
(s

)
Time to reach the completion of a particular Phase

Phase 1
Phase 2
Phase 3
Phase 4

Fig. 5. Time to reach the completion of a particular phase in the toy
application for various values of number of parcels to coalesce in a single
message with a wait time of 4000µs. In this example, as more parcels are
coalesced, the time to reach the completion of a phase decreases.

phenomena in strongly correlated materials. The simulation
requires the use of many rank-3 tensors composed of complex
doubles. The linear dimension (Nc) of the simulation controls
the tensor size. The tensor contains N3

c complex doubles. The
memory required by the simulation can approach terabytes.
Accommodating such large quantities of data requires the
simulation to be executed on multiple nodes. Throughout the
simulation all the data from each node must be broadcast to the
other nodes. The rotation phase sends 8∗N2

c parcels containing
Nc elements. No message depends on another and they can
be sent in parallel.

For the trial simulation executed on four nodes, Nc = 512
was chosen as it uses a non trivial amount of memory and
it exposes high network utilization. Tests indicate the timing
of an individual run will not be likely to vary much from the
averages reported. In our experiment we coalesced 4 parcels
into a single message and waited 5000µs before flushing the
parcel queue. We ran the experiment 100 times. The calculated
Relative Standard Deviation of the trial was less than five
percent which indicates that the random fluctuations of an
individual run should not influence the trends reported.

Measurements of network overhead and total execution
time demonstrate the importance of parcel coalescing in a
communication heavy problem. To account for the random
nature of any application that involves heavy network traffic,
the application was run three times for each set of parameters.
The following results show the averages of the measured
values from the three independent runs. Figure 6 shows the
variation in overall time to complete different iterations of the
parquet application coalescing different numbers of parcels in
a single message with a wait time of 4000µs. We observed a
clear decrease in runtime by coalescing two parcels in a mes-
sage. Increasing the number of parcels to coalesce improved
the runtime further. It was observed that coalescing four
parcels in a message resulted in the minimum time. Further
increasing the number of parcels in a message adversely affects
the runtime. These trends are more pronounced in the later
iterations due to cumulative effects.

1 2 4 8 16 32 64 128 256
Number of parcels to coalesce

50

100

150

200

250

300

350

400

450

Ti
m

e
(s

)

Time to reach the completion of a particular iteration
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

Fig. 6. Time to reach the completion of different iterations in the parquet
application for various numbers of parcels coalesced in a single message with
a wait time of 4000µs. Each color indicates a different iteration. There is a
clear decrease in overall runtime from coalescing one parcel in a message to
coalescing two. The minimum runtime is found when coalescing four parcels
in a message after which the runtime increases due to a suboptimal choice of
parcel coalescing parameters.

60 70 80 90 100
Average time per iteration(s)

30

35

40

45

Av
er

ag
e

Ne
tw

or
k

Ov
er

he
ad

 (%
)

Time vs Network Overhead

Fig. 7. Scatter Plot of Average Network Overhead Vs Average time per
iteration for the Parquet Application. Each dot represents a set of parcel coa-
lescing parameters. A Pearson’s correlation coefficient of 0.92 was calculated
indicating a strong positive correlation between network overhead and runtime
for the parquet application.

In order to further understand the relationship between
parcel coalescing parameters and the overall runtime of the
parquet application, we performed a parameter sweep running
the parquet application with increasing the value of the parcel
coalescing parameters until the execution time showed a
clearly increasing trend. As seen in Figure 8, bands along the
axes where number of parcels to coalesce in a single message
is one or when wait time is set at 1µs highlight the largest
runtimes. This choice of parameters effectively disable parcel
coalescing thus resulting in the large runtime seen. We get an
immediate reduction in runtime with two parcels to coalesce
in a single message. The maximum reduction in runtime was
seen with coalescing four parcels in a message and wait time
of 5000µs.

For the same runs, performance counters reported the net-

1 2 4 8 16 32 64 12
8

25
6

Number of parcels to coalesce

1

1000

2000

3000

4000

5000

 W
ai

t t
im

e
(

s)
Time per Iteration for various coalescing parameters

55
60
65
70
75
80
85
90
95

Av
er

ag
e

Ti
m

e
Pe

r I
te

ra
tio

n
(s

)

Fig. 8. Average time per iteration for different numbers of parcels to coalesce
into a single message and increasing wait times before flushing the parcel
queue. Parcel coalescing is effectively disabled when a message contains only
a single parcel or only 1 µs wait time before flushing the parcel queue. This
produces slower execution times as seen in the bars along the horizontal and
vertical axes.

work overhead as defined in Eq. 4. Figure 7 graphs various
values of coalescing parameters against the value of the aver-
age network overhead counter. It was seen that the parcel coa-
lescing parameter that resulted in lower overhead additionally
had lower execution time. Our calculated Pearson’s correlation
coefficient of 0.92 indicated a strong positive correlation. Most
of the parameter sweep results in larger overheads than the
optimum parameter. This implies that an arbitrary choice of
parcel coalescing parameters will likely result in suboptimal
performance. The choice of parcel coalescing parameters must
therefore be done carefully.

D. Instantaneous Measurements

In order to show that the metrics introduced in section III
can be used to signal networking efficiency, we reran our
artificial application from Listing 1 with various settings for
number of parcels to coalesce with a wait time of 2000µs.
Here, instead of using the same number of parcels to coalesce
throughout the lifetime of the application, we changed the
number of parcels to coalesce into a single message during
different application phases. As seen in Figure 9, we start with
128 parcels to coalesce in a single message which produces
the lowest network overhead. Upon changing to suboptimal
values in subsequent phases, we see that network overhead
increases along with the total time to complete the phase.
Furthermore, a different run of the same application which
started with a suboptimal value of coalescing, one parcel per
message, produced the highest overhead in the beginning but
changed when a favorable number of parcels were coalesced
which reduced the network overhead in subsequent phases. We
also observe that suboptimal values of coalescing parameters
produce larger phase completion time. This preliminary result
indicates that our metric can be used to signal when changes
in coalescing parameters would be beneficial in an adaptive
setting.

10 20 30 40 50 60
Elapsed Time (s)

40

42

44

46

48

50

Ne
tw

or
k

Ov
er

he
ad

 (%
)

128

2

16

1

1

2

16

128

Result of parameters changed at runtime

nparcels = 128, 2, 16 and 1
nparcels = 1, 2, 16 and 128

Fig. 9. Network overhead for various values of number of parcels to coalesce
in a single message each phase with a wait time of 2000µs for two different
runs of the toy application. One run starts with optimal value 128 parcels to
coalesce in a single message producing the lowest overhead that increases
substantially in the subsequent phases with suboptimal parameter choice.
Another run starts with a single parcel every message that produces the highest
overhead that substantially decreases with favorable parameter selection.

V. DISCUSSION

The performance of applications that generate large numbers
of small parcels in task based runtime systems such as HPX
can be improved by coalescing these small parcels into larger
ones. This improvement is largely due to reduction in network
overheads as fewer messages are created. However, static
approaches towards coalescing parameter selection can only
provide limited gains in performance. Adaptive techniques are
needed to make further reductions in application execution
times. Charm++ [6] has shown the effectiveness of automatic
configuration parameter selection using PICS: A Performance-
Analysis-Based Introspective Control System [7]. Their ap-
proach tested a set of configuration parameters for each
iteration of the application and chose new parameters based on
the performance measured during that iteration. This approach
to adaptive tuning is only suited for iterative applications, and
therefore, this technique is unable to consider the phase of
the application. The methodology introduced in this research
improves upon the state of the art by introducing new intrinsic
performance counters which provide the current state of the
application in real time. Using information obtained from such
counters, one can make a distinction between different com-
munication phases of the application and select configuration
parameters accordingly. Metrics identified in this research have
shown a strong correlation with execution time of the test
applications. Furthermore, Figure 9 demonstrated that chang-
ing the coalescing parameters at runtime could influence the
instantaneous network overhead. This result indicates that data
obtained from intrinsic performance counters could be used to
make adaptive decisions. This allows for intelligent adaptive
behavior where one can employ different configuration settings
depending upon the phase of the application.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we implemented parcel coalescing in HPX
as a means to reduce the cost of overhead associated with
sending and receiving messages. Our implementation of parcel
coalescing in HPX provided marked reduction in total runtime
for the toy application as well as a real physics simulation,
Parquet. This paper also presented methods to measure the
network overhead within task based runtime systems. We
were able to establish strong positive correlation between the
network overhead measured using our metric and the overall
runtime of both applications. We showed that the benefits
from parcel coalescing are due to the reduction in overheads
associated with message transmission. As seen in the two
applications presented in this research, choosing the best
coalescing parameters is important as execution time increases
with suboptimal parameter selection. Additionally, the large
difference between parameters that produce the shortest time
for the toy application and the parquet application highlight the
need to identify the best set of parameters for each application.
We also demonstrated that alternatives to a brute force method
of determining these parameters is required for reasonable
application productivity.

The metrics identified in this research aid in evaluating
network efficiency by giving us an intrinsic view of the
underlying network overhead which would be difficult to
measure using conventional methods. Our research gives the
user an ability to assess performance from a perspective other
than that of execution time. This allows a user to analyze an
application in real time and observe the effect of varying parcel
coalescing parameters on network overheads at runtime. The
strong positive correlation between execution time and net-
work overhead opens new possibilities for advanced adaptive
solutions for parcel coalescing. The runtime system could tune
its parcel coalescing parameters dynamically by evaluating
the overhead counters provided by the Performance Counter
Framework. In the future, metrics and techniques defined in
this research could be used as a basis for the adaptive tuning
of a broad set of messaging parameters.

VII. ACKNOWLEDGMENTS

The authors would like to thank Mark Jarrell, Juana Moreno
and Ka-Ming Tam for their valuable input and suggestions
throughout the study. This work was partly funded by the NSF
EPSCoR LA-SiGMA project under award #EPS-1003897 ,the
NSF STORM project under the award #ACI-1339782 and NSF
Phylanx project award #1737785. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] M. P. Forum, “Mpi: A message-passing interface standard,” Knoxville,
TN, USA, Tech. Rep., 1994.

[2] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson, “Effects
of communication latency, overhead, and bandwidth in a cluster
architecture,” in Proceedings of the 24th Annual International
Symposium on Computer Architecture, ser. ISCA ’97. New
York, NY, USA: ACM, 1997, pp. 85–97. [Online]. Available:
http://doi.acm.org/10.1145/264107.264146

[3] C. D. Pham, “Comparison of message aggregation strategies for parallel
simulations on a high performance cluster,” in Proceedings 8th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (Cat. No.PR00728), 2000, pp. 358–365.

[4] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine,
“Active pebbles: Parallel programming for data-driven applications,” in
Proceedings of the International Conference on Supercomputing, ser.
ICS ’11. New York, NY, USA: ACM, 2011, pp. 235–244. [Online].
Available: http://doi.acm.org/10.1145/1995896.1995934

[5] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “Am++: A
generalized active message framework,” in 2010 19th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
Sept 2010, pp. 401–410.

[6] L. Wesolowski, R. Venkataraman, A. Gupta, J. S. Yeom, K. Bisset,
Y. Sun, P. Jetley, T. R. Quinn, and L. V. Kale, “Tram: Optimizing fine-
grained communication with topological routing and aggregation of mes-
sages,” in 2014 43rd International Conference on Parallel Processing,
Sept 2014, pp. 211–220.

[7] Y. Sun, J. Lifflander, and L. V. Kalé, “Pics: A performance-analysis-
based introspective control system to steer parallel applications,”
in Proceedings of the 4th International Workshop on Runtime
and Operating Systems for Supercomputers, ser. ROSS ’14. New
York, NY, USA: ACM, 2014, pp. 5:1–5:8. [Online]. Available:
http://doi.acm.org/10.1145/2612262.2612266

[8] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“Hpx: A task based programming model in a global address space,”
in Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models, ser. PGAS ’14. New
York, NY, USA: ACM, 2014, pp. 6:1–6:11. [Online]. Available:
http://doi.acm.org/10.1145/2676870.2676883

[9] H. Kaiser, M. Brodowicz, and T. Sterling, “Parallex an advanced
parallel execution model for scaling-impaired applications,” in
Proceedings of the 2009 International Conference on Parallel
Processing Workshops, ser. ICPPW ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 394–401. [Online]. Available:
http://dx.doi.org/10.1109/ICPPW.2009.14

[10] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser, “Active messages: A mechanism for integrated
communication and computation,” SIGARCH Comput. Archit. News,
vol. 20, no. 2, pp. 256–266, Apr. 1992. [Online]. Available:
http://doi.acm.org/10.1145/146628.140382

[11] P. Grubel, H. Kaiser, J. Cook, and A. Serio, “The performance
implication of task size for applications on the hpx runtime system,”
in Proceedings of the 2015 IEEE International Conference on
Cluster Computing, ser. CLUSTER ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 682–689. [Online]. Available:
http://dx.doi.org/10.1109/CLUSTER.2015.119

[12] Boost, “Boost C++ Libraries,” http://www.boost.org/, 2017.
[13] S. X. Yang, H. Fotso, J. Liu, T. A. Maier, K. Tomko, E. F. D’Azevedo,

R. T. Scalettar, T. Pruschke, and M. Jarrell, “Parquet approximation for
the 4x4 Hubbard cluster,” vol. 80, p. 046706, 2009.

[14] S. Group, “Running HPX on ROSTAM,” https://github.com/STEllAR-
GROUP/hpx/wiki/Running-HPX-on-Rostam, 2017.

[15] H. Kaiser, B. A. L. aka wash, T. Heller, A. Berg, J. Biddiscombe,
A. Bikineev, G. Mercer, A. Schfer, atrantan, A. Serio, J. Habraken,
M. Anderson, S. R. Brandt, M. Stumpf, D. Bourgeois, M. Copik,
K. Huck, V. Amatya, L. Viklund, Z. Khatami, D. Bacharwar,
S. Yang, E. Schnetter, Bcorde5, M. Brodowicz, L. Troska, B. Wagle,
S. Upadhyay, Z. Byerly, and H. Brakmi, “STEllAR-GROUP/hpx: HPX
V1.0: The C++ Standards Library for Parallelism and Concurrency,”
Apr. 2017. [Online]. Available: https://doi.org/10.5281/zenodo.556772

