
Preliminary Design Examination of the ParalleX System
from a Software and Hardware Perspective

Alexandre Tabbal
Department of Electrical

Engineering
LSU, Baton Rouge, LA, USA

atabbal@ece.lsu.edu

Matthew Anderson
Department of Physics and

Astronomy
LSU, Baton Rouge, LA, USA

matt@phys.lsu.edu

Maciej Brodowicz
Center for Computation and

Technology
LSU, Baton Rouge, LA, USA

maciek@cct.lsu.edu

Hartmut Kaiser
Center for Computation and

Technology
LSU, Baton Rouge, LA, USA

hkaiser@cct.lsu.edu

Thomas Sterling
Center for Computation and

Technology
LSU, Baton Rouge, LA, USA

tron@cct.lsu.edu

ABSTRACT
Exascale systems, expected to emerge by the end of the
next decade, will require the exploitation of billion-way par-
allelism at multiple hierarchical levels in order to achieve
the desired sustained performance. While traditional ap-
proaches to performance evaluation involve measurements
of existing applications on the available platforms, such a
methodology is obviously unsuitable for architectures still at
the brainstorming stage. The prediction of the future ma-
chine performance is an important factor driving the design
of both the execution hardware and software environment.
A good way to start assessing the performance is to iden-
tify the factors challenging the scalability of parallel appli-
cations. We believe the root cause of these challenges is the
incoherent coupling between the current enabling technolo-
gies, such as Non-Uniform Memory Access of present mul-
ticore nodes equipped with optional hardware accelerators
and the decades older execution model, i.e., Communicating
Sequential Processes (CSP). Supercomputing is in the midst
of a much needed phase change and the High-Performance
Computing community is slowly realizing the necessity for
a new design dogma, as affirmed in the preliminary Exas-
cale studies. In this paper, we present an overview of the
ParalleX execution model and its complementary design ef-
forts at the software and hardware levels, while including
power draw of the system as the resource of utmost impor-
tance. Since the interplay of hardware and software envi-
ronment is quickly becoming one of the dominant factors
in the design of well integrated, energy efficient, large-scale
systems, we also explore the implications of the ParalleX
model on the organization of parallel computing architec-
tures. We also present scaling and performance results for
an adaptive mesh refinement application developed using a
ParalleX-compliant runtime system implementation, HPX.

Keywords
Execution Model, ParalleX, Model of Computation

1. INTRODUCTION
An entire class of parallel applications is emerging as scal-

ing -impaired. These are simulations that consume extensive
execution time, sometimes exceeding a month, but which are
not able to use effectively more than a few hundred proces-
sors. Some examples are modeling colliding neutron stars
to simulate gamma ray bursts in numerical relativity and
simultaneously identifying the gravitational wave signature
for detection with such massive instruments as LIGO (Laser
Interferometer Gravitational Observatory). These codes are
based on Adaptive Mesh Refinement (AMR) algorithms to
concentrate processing effort at the most dynamic parts
of the computation space at any one time. However, to-
day’s conventional parallel programming methods such as
MPI [12] and systems such as distributed memory MPPs and
Linux clusters exhibit poor efficiency and constrained scal-
ability for this class of applications. This severely hinders
scientific advancement. Many other classes of applications
exhibit similar properties. A new execution model and pro-
gramming methodology is required [11] to achieve dramatic
improvements for such problems and prepare them for effi-
cient exploitation of Petaflops systems comprising millions
of cores. This paper briefly presents such a model, Par-
alleX (PX), and provides early results from an experimental
implementation of an AMR application simulating a semi-
linear wave. The AMR implementation is based on the HPX
runtime system that suggests the future promise of the PX
strategy.

1.1 Challenging Performance Factors

1.1.1 Sources of performance degradation
The bottlenecks to the effective use of new generation

HPC systems include: (S)tarvation due to lack of usable ap-
plication parallelism and means of managing it; (L)atency
from remote access across systems or to local memories;
(O)verheads damaging strong scalability, efficiency, and ham-
pering effective resource management; (W)aiting for con-
tention resolution due to multicore chip I/O pins, memory
banks, and systems interconnects (SLOW). ParalleX model
addresses these issues by providing explicit mechanisms that

offset, mask or counteract the effects of these phenomena.

1.1.2 Power
As explained in [4], power usage is the main factor limiting

scalability of computer systems. Part of the problem has its
origin in the laws of physics, yet another major part is due to
the design legacy methodology of computer systems. Com-
plex hardware and software designs burn too much extra
energy not directly related to the computation (e.g., caches,
speculative execution, standard software stacks). Simplicity
is fundamental to the execution model philosophy we are
embracing; simpler designs are expected to conserve power
through elimination of expensive implementations with di-
minishing returns on the investment in silicon area and its
related power usage. In addition, reduction of complexity of
the computing system stack is not only welcomed, but nec-
essary to the design of feasible future execution platforms.
To better assess the power consumption of the PX mech-
anisms, we augmented a reconfigurable cluster (multicore
SMP nodes with FPGAs) with AC and DC power meters
that allow us to estimate the energy distribution in the sys-
tem.

1.1.3 Productivity
Productivity is a major concern for the HPC community

not only as the throughput of the machine in terms of com-
pleted jobs, but also the ability of users in utilizing the sys-
tems. This is primarily related to the exposed application
programming interface (API) that systems and application
programmers use to realize the work they are trying to ac-
complish.

The PX model [9] has been developed to address these
challenges by enabling a new way of computation based on
message-driven flow control in a global address space coordi-
nated by lightweight synchronization elements. This paper
describes the PX model and presents a runtime systems ar-
chitecture that delivers the mechanisms required to support
the parallel execution, synchronization, resource allocation,
and name space management.

2. THE PARALLEX EXECUTION MODEL
An execution model [of computation] is a set of governing

principles that guide the co-design, function, and interoper-
ability of all layers of the systems structure from the pro-
gramming model through the system software to the hard-
ware architecture. The trajectory of HPC systems over the
last six decades has been a sequence of phases of contin-
ued incremental improvement demarcated by abrupt transi-
tions in fundamental paradigm. Such phases include vector
computing, SIMD arrays, and CSP, each a result of new
technology-enabled opportunities driving new architecture
in combination with an associated programming model. In
each case, the new class of systems reflected a fundamental
execution model. In the last few years, changes in technol-
ogy and limits of design complexity have forced multicore
structures while future system projections suggest Exascale
systems by the end of this decade comprising hundreds of
millions of cores and multi-billion way parallelism. To coor-
dinate the cooperative operation, their design, and their pro-
gramming of computing components comprising such mas-
sive structures, a new model of computation is required in-
augurating a 6th phase of HPC. PX is motivated by: (1) the
long term objective of enabling Exaflops scale computing by

the end of the decade in an era of flattening clock rates and
processor core design complexity resulting in the expected
integration of up to a billion cores by the beginning of the
next decade; (2) the more immediate scaling concerns of a
diverse set of what we will call scaling-challenged problems
that do not scale well beyond a small cores number, and
takes a long time to complete.

PX is being developed to explore computing paradigms
capable of exposing and exploiting substantially greater par-
allelism through new forms and finer granularity, while elim-
inating the over-constraining properties of such typical syn-
chronization constructs as barriers. PX is also devised to
incorporate intrinsic latency hiding and facilitate dynamic
adaptive methods of resource and task management to re-
spond to contention for shared physical and logical resources,
including runtime load-balancing. PX, like any true model
of computation, transcends any single element of a high per-
formance computer to represent the holistic system struc-
ture, interdependencies, and cooperative operation of all
system component layers.

The form and function of the current experimental PX
model are briefly described:

Active Global Address Space (AGAS) provides a sys-
tem -wide context of a shared name space. While avoiding
the constraining overhead of cache coherence, it extends the
PGAS models (UPC [5], GASNet [2]) by permitting the dy-
namic migration of first class objects across the physical sys-
tem without requiring transposition corresponding virtual
names. This is critical for dynamic objects, load-balancing,
and fault tolerance in the context of reconfigurable graceful
degradation.

Parallel Processes are the hierarchical context in which
all computation of a given parallel application is performed.
Unlike conventional models, PX processes may span mul-
tiple nodes and may share nodes as well. Such a process
provides part of the global name space for its internal active
entities, which include other chips’ processes, threads, data,
methods, and physical allocation mappings.

Threads provide local control flow and data usage within
a single node serving as the primary modality for specifying
(thread method) and performing (instantiated thread) most
of the computational work to be performed by an applica-
tion program. Threads represent a partially ordered set of
operations on an infinite set of single-assignment registers as
well as on relatively global data (allowing partial functional
programming). Threads (and processes) are ephemeral and
as first class objects can migrate (easier fault tolerance and
power management).

Local Control Objects (LCOs) are a unification of the
semantics of synchronization enabling a new methodology of
representing, managing, and exploiting distributed parallel
control state. Using conventional object-oriented techniques
limited to small objects within a single node, these dy-
namic objects realize synchronization constructs from simple
semaphores to complex dataflow templates andactor future.

Parcels are messages that convey action as well as data
asynchronously between physically disjoint system nodes.
Parcels are a class of Active Messages with destinations ei-
ther logical objects or physical entities, actions representing
either primitive hardware functionality or subroutine meth-
ods, payload of a few argument values or alternatively large
blocks of data, and a specifier (continuation) of follow-on
activity and/or change of global control state.

Figure 1: Modular structure of HPX implementation.

Percolation is a special technique for using precious re-
sources or new resources by moving the work to the resource
while both hiding the latency of such action and eliminating
the overhead of such action from the target resource. This is
of value for efficient use of GPU accelerators or for new pre-
viously unallocated nodes for dynamic resource allocation.

While PX suggests changes or entirely new forms of sys-
tem elements including computer architecture, near-term
work has been focused on best practices for conventional
systems to provide early value for problems that challenge
scaling. This paper describes such an experimental runtime
system and its application to an AMR numerical relativity
code.

2.1 A Runtime System Implementation
The high-performance PX (HPX) runtime system −a C++

implementation, represents a first attempt to develop a com-
prehensive API for a parallel runtime system supporting the
PX model. Among the key features of HPX we discuss:

• It is a modular, feature-complete, and performance
oriented representation of the PX model targeted at
conventional architectures and, currently, Linux based
systems, such as SMP nodes and conventional clusters.

• Its modular architecture allows for easy compile time
customization and minimizes the runtime memory foot-
print.

• It enables dynamically loaded application-specific mod-
ules to extend the available functionality, at runtime.
Static pre-binding at link time is also supported.

• Its strict adherence to Standard-C++ and the utiliza-
tion of Boost [3] enable it to combine powerful compile
time optimization techniques and optimal code gener-
ation with excellent portability.

We designed HPX as a runtime system providing an alterna-
tive to conventional computation models, such as MPI, while
attempting to overcome their limitations such as: global
barriers, insufficient and too coarse-grained parallelism, and
poor latency hiding capabilities (difficultly in orchestrating
the overlap of computation and communication).

2.2 General Design
The implementation requirements of the HPX library as

described in the previous section directly motivate a num-

ber of design objectives. Our most important objective was
to design a state-of-the-art parallel runtime system provid-
ing a solid foundation for PX applications while remaining
as efficient, as portable, and as modular as possible. This
efficiency and modularity of the implementation is central
to the design, and dominates the overall architecture of the
library (see Fig. 1). This figure shows a block diagram of
the architecture of our HPX implementation. It exposes
the necessary modules and an API to create, manage, con-
nect, and delete any PX parts from an application; it is
generally responsible for resource management. The cur-
rent implementation of HPX provides the infrastructure for
the following PX concepts.

2.3 AGAS – The Active Global Address Space
The requirements for dynamic load-balancing and the sup-

port for dynamic AMR related problems define the necessity
for a single global address space across the system. This not
only simplifies application writing, as it removes the depen-
dency of codes on static data distribution, but enables seam-
less load-balancing of application and system data. The ab-
straction of localities is introduced as a means of defining a
border between controlled synchronous (intra-locality) and
fully asynchronous (inter-locality) operations. A locality is
a contiguous physical domain, managing intra-locality la-
tencies, while guaranteeing compound atomic operations on
local state. Different localities may expose entirely different
temporal locality properties. Our implementation interprets
a locality to be equivalent to a node in a conventional sys-
tem. Intra-locality data access means access to the local
memory (or disk), while inter-locality data access and data
movement depend on the system network. In PX, accessing
first class object is decoupled from its locality.

2.4 Threads and their Management
The HPX-thread manager implements a work queue based

execution model. PX-threads are first class objects with im-
mutable global names, enabling even-remote management.
We avoid threads crossing localities (expensive operation);
instead, work migrates via continuation by sending a PX-
parcel that might cause the instantiation of a thread at
the remote locality. PX-threads are cooperatively (non-
preemptively) scheduled in user mode by a thread manager
on top of an OS-thread per core. The threads can be sched-
uled without a kernel transition, which provides a perfor-
mance boost. Additionally the full use of the OS’s time
quantum per OS-thread can be achieved even if a PX-thread
blocks for any reason.

2.5 Parcel Transport and Parcel Management
In PX, parcels are an extended form of active messages for

inter-locality communication. Parcels are the remote seman-
tic equivalent to creating a local PX-thread. If a function is
to be applied locally, a PX-thread is created; if it has to be
applied remotely, a parcel is generated and sent which will
create a PX-thread at the remote site. Parcels are either
used to move the work to the data (by applying an opera-
tion on a remote entity) or to gather small pieces of data
back to the caller. Parcels enable message passing for dis-
tributed control flow and for dynamic resource management,
featuring a split phase transaction based execution model.
While the current implementation relies on TCP/IP, we will
be moving to existing high performance messaging libraries,

0 2 4 6 8 10 12
Radius

0

0.002

0.004

0.006

0.008

0.01
W

av
e

am
pl

itu
de

Coarse mesh
Level 1
Level 2

AMR Example Mesh Structure

Figure 2: Two levels of AMR.

such as GASNet [2] and Converse [10].

2.6 LCOs − Local Control Objects
An LCO is an abstraction of different functionalities for

event-driven PX-thread creation, protection of data struc-
tures from race conditions and automatic event driven on-
the-fly scheduling of work with the goal of letting every
single function proceed as far as possible. Every object
which may create (or reactivate) a PX-thread as a result
of some action exposes the necessary functionality of an
LCO. LCOs are used to organize flow control. A well know
and prominent example of an LCO is a Future. It refers
to an object that acts as a proxy for a result that is ini-
tially not known, usually because the computation of its
value has not yet completed. The future synchronizes the
access to this value by optionally suspending the requesting
thread until the value is available. HPX provides specialized
implementations of a full set of synchronization primitives
(mutexes, conditions, semaphores, full-empty bits, etc.) us-
able to cooperatively block a PX-thread, while informing
the thread manager that other work can be run on the
OS-thread (core). The thread manager can then make a
scheduling decision to execute other work. The next section
discussed the AMR physics application we implemented in
HPX.

3. AMR-BASED APPLICATION
Modern finite difference based simulations require ade-

quately resolving many physical scales which often vary over
several orders of magnitude in the computational domain.
Many high performance computing toolkits have been de-
veloped to address this need by providing distributed AMR
based on the MPI libraries [15, 7]. These toolkits serve
all types of applications ranging from astrophysics and nu-
merical relativity to Navier-Stokes solvers. Adaptive mesh
refinement, introduced by Berger-Oliger [1], employs mul-
tiple computational grids of different resolution and places
finer-resolution meshes where needed in the computational
domain in order to adequately resolve phenomena at increas-
ingly smaller physical and temporal scales.

3-D AMR simulations are typically 104–105 times faster
than performing a computation using a single resolution
mesh. A sample initial AMR mesh structure of the test
application we explore here is illustrated in Fig. 2. The ini-
tial data supplied is a wave pulse. As the wave pulse moves,

(a) (b)

Figure 3: Two different approaches to structured mesh

based communication: (a) 2-D representation of a typical

communication pattern for a finite difference based AMR

code, and (b) the PX-based AMR.

the higher resolution meshes adjust accordingly in order to
keep the local error criterion below threshold. Other crucial
components to a typical finite difference based AMR simu-
lation include the clustering algorithm, which decides how
to best arrange and break up the many overlapping finer
meshes, and the load-balancing scheme, which decides how
to distribute the workload across the available processors.
The clustering algorithm, load-balancing scheme, and the
specific application workload all impact the scaling charac-
teristics of the AMR application. We differentiate scaling
characteristics into two types: strong and weak scaling. In
strong scaling, the test application problem size is kept con-
stant while the number of processors devoted to computing
the simulation is increased. In weak scaling, the problem
size is increased as the number of processors is increased
so that the local processor workload on the system is kept
constant.

While some AMR applications have successfully demon-
strated weak scaling to many thousands of processors, strong
scaling to such numbers has not been demonstrated among
available alternatives.

MPI based AMR applications suffer from a global barrier
every timestep: no point in the computation can proceed to
the next timestep unless all other points have reached the
same point in the computation. Depending on the granular-
ity characteristics of the physical problem being simulated,
this global barrier can cause a large number of processors to
sit idle while waiting for the rest of the grid to catch up.

The PX based AMR presented here removes all global
barriers to computation, including the timestep barrier, and
enables autonomous adaptive refinement of regions as small
as a single point without requiring knowledge of the refine-
ment characteristics of the rest of the grid. A key component
of this is the ability to implement the finest granularity pos-
sible in a simulation. Finite difference AMR codes normally
pass large memory blocks of grid points to the user defined
code; only the boundaries of these blocks are communicated
between processors as illustrated in Fig. 3(a). While the PX
based AMR code explored here is capable of this paradigm,
it is also capable of the extreme limit of computational gran-
ularity – a single point – as shown in Fig. 3(b). This provides
the most amount of independence in computing different re-

0 5 10
Computational Domain: radius ∈ [0,14]

2

4

6

8

T
im

es
te

p

60 secs
120 secs
180 secs

2 Level AMR on a single processor

Figure 4: Snapshots at various wall clock time intervals

of the timestep each point in the computational domain

has reached; when global barriers are removed, some

points in the computational domain can proceed to com-

pute more timesteps than others in a fixed amount of

wall clock time. The futures construction ensures that

causality is still respected in the computation. Conse-

quently the timestep curve takes on an upward facing

cone shape.

gions of the computational domain and thereby gives more
flexibility in order to better load balance the AMR problem.
The ability of the PX based AMR code to change granular-
ity as a runtime parameter allows the user to adapt to the
optimal granularity for a specific architecture and a specific
number of processors.

4. ANALYSIS
In this section we explore three main implications of key

concepts in the PX based AMR implementation. First, we
find that one of the principal concepts of PX, message-driven
work-queue execution, results in implicit load-balancing for
parallel AMR simulations. Second, we demonstrate that PX
is capable of implementing highly nontrivial AMR problems
and successfully run in parallel across an order of magnitude
of processors using the smallest computational granularity
possible. Third, we demonstrate the functionality of par-
allel memory management for asynchronously accessed dy-
namically refined mesh objects. Global timestep barriers are
ubiquitous in MPI based AMR codes. The message-driven
work-queue execution model of PX allows us to eliminate
this global timestep barrier using futures allowing a much
more efficient overlap of computation and communication
as illustrated in Fig. 4 and 5. Without a global timestep
barrier, some domain points in an AMR simulation com-
pute faster than others while still respecting the causality
of the problem as ensured by the futures construction. In
Fig. 4 this is demonstrated for a 2 level AMR simulation,
or a simulation with three different resolution meshes – a
coarse mesh, a finer mesh, and a finest mesh. The semilin-
ear wave application was run for 60, 120, and 180 seconds
of wall clock time. The timestep each point in the computa-
tional domain had reached by the end of the 60, 120, or 180
seconds is plotted. Unlike in MPI simulations, where each
point has to be at the same timestep, some points in the

0 5 10
Computational Domain: radius ∈ [0,14]

27

28

29

30

31

32

T
im

es
te

p

10 secs no barrier
10 secs with barrier

1 Level AMR on four processors

(a)

0 5 10
Computational Domain: radius ∈ [0,14]

125

130

135

140

T
im

es
te

p

60 secs no barrier
60 secs with barrier

1 Level AMR on four processors

(b)

Figure 5: Illustration of the impact of implicit load bal-

ancing. This plot compares the timestep reached by ev-

ery point in the computational domain after either 10 or

60 seconds of wall clock time for an AMR simulation with

1 level of refinement. The refinement criterion was scalar

field amplitude. (a) and (b) show results performed on

four processors. Removing the global timestep barrier

gives more flexibility to load balance; consequently the

parallel cases which don’t enforce a global barrier are

able to compute faster than those cases in (a) and (b)

which do enforce a global timestep barrier.

1 2 4 10
Number of processors

1

2

3

4

5
Sp

ee
d-

up

5 levels of refinement
4 levels of refinement
3 levels of refinement

PX AMR application: Present Status

Figure 6: The current strong scaling performance of

the PX based AMR application with various levels of

refinement. The scaling stays essentially the same except

for a slight improvement as more levels of refinement are

added and the problem is run on more processors. This is

completely the opposite behavior from what is observed

with the MPI based comparison AMR code where strong

scaling steadily degrades as more refinement levels are

added.

computational domain are able to compute more timesteps
faster than others. Futures ensure that causality is respected
by requiring that the immediate neighbors of a point being
updated be at the same timestep as the point being updated.
Thus the resulting timestep curve in Figs. 4 and 5 resembles
an upward facing cone where the tip of the cone is located
in the region of highest spatial resolution.

On multiple cores/OS-threads, load-balancing across the
processors substantially improves using the message-driven
work-queue execution model. The independence in comput-
ing different regions of the computational domain gives more
flexibility in order to better load-balance the AMR prob-
lem. In Figure 5, we compare AMR simulations with 1 level
of refinement running with and without a global timestep
barrier on four processors. AMR simulations were run for
either 10 or 60 seconds of wall clock time and the timestep
reached by each point in the computational domain was plot-
ted. Cases without the global barrier were able to compute
more timesteps than cases with the global barrier in the
same amount of time. This is a natural consequence of the
message-driven work-queue execution model: processors are
able to overlap communication and computation more effi-
ciently than algorithms which enforce a global barrier every
timestep.

Strong scaling results for several PX based AMR simula-
tions are found in Figure 6. In MPI based AMR simulations,
the strong scaling performance steadily decreases as more
levels of refinement are added. We see the opposite behav-
ior for PX based AMR simulations. The strong scaling stays
essentially the same as levels are added. When more proces-
sors are used, the strong scaling actually improves as more
levels are added. This behavior is a natural consequence
of the implicit load balancing capability of PX based AMR
simulations.

5. PARALLEX CORE ARCHITECTURE
Learning from the software implementation and AMR’s

results, we suggest a parallel core architecture to support
the PX model. We discuss some details of a notional archi-
tecture for a lightweight core that would be closely associ-
ated with the memory banks (vaults) for cases of poor tem-
poral locality. This Embedded Memory Processor (EMP)
incorporates the mechanisms that would be needed to min-
imize the overhead, latency, and in some cases contention
while exposing parallelism in an energy efficient structure.
Complex scientific workloads (memory-intensive and poor
locality) exhibit very different operational properties than
structures primarily dedicated to compute-intensive threads
with high temporal locality or many operations per input
operand. Structures optimized for one or the other modality
will perform better, prove more efficient in terms of utiliza-
tion and power, and be less costly in die real estate than
a more generalized core designed to serve both operational
domains. EMPs have to deal effectively with both: an in-
novative lightweight core to serve memory intensive threads
in the context of a highly scalable system capable of the low
end real-time embedded applications to Petaflops capability
within a rack, and beyond to Exascale systems comprising
1K such racks deployed before the end of this decade. This
lightweight processor will be closely associated with a mem-
ory vault comprising one or more dedicated memory banks
with tight coupling for low latency, high bandwidth access
to data resident in the related memory vault, and will pro-
vide direct support for most of PX’s functional elements.
The principal objectives of the EMP design and operation
are:

• Maximize throughput of associated memory vault and
related operations,

• Provide low power operation with best energy effi-
ciency,

• Serve in an ensemble of as many as 109 cores,
• Support message-driven computation,
• Participate in an efficient AGAS context,
• Enable compound atomic operation sequences, impor-

tant for realization of LCOs,
• Incorporate fault responsive mechanisms for continued

processing in the presence of failures,
• Enforce protection of logical domains and physical re-

sources,
• Minimize cost and complexity of design, fabrication,

compilation, and operation.

The following describes key conceptual aspects of an in-
novative strategy to achieve these objectives for a memory-
oriented lightweight processor that will serve as a key highly
replicated component of a possible PX-enabled Exascale com-
puting system.

5.1 Simplicity of Design
Even as performance per processor has increased for some

applications, performance per transistor and per Joule has
declined steadily over the same period. Additionally, design
costs have increased such that a modern general purpose
processing chip can cost hundreds of millions or a couple
of billion dollars from concept to fabrication and packaging.
This limits new processor designs to mass markets such as
PCs, embedded, mobile, or games. An alternative design
strategy that better suits PX methodology and, in turn,

AMR applications is that of maximum simplicity. The fol-
lowing are properties and advantages that may be derived
from the strategy of design simplicity:

• Low cost of design (few $100s of thousands) and usage
of open-source simulation and verification tools

• High efficiency of energy per operation
• Small core size (low transistor count) provides higher

processor density per die and increases yield
• Elimination of wasteful speculative mechanisms

When combined with co-design of all system hardware and
software layers, minimizing processor complexity has a num-
ber of important advantages that may prove significantly
superior to traditional solutions.

5.2 Embedded Memory Processing
The EMP design, building on Processor-In-Memory (PIM)

concepts investigated in [8] and implemented in [6] a decade
later, will be optimized around the requirements of mem-
ory access and operation. It has the following objectives:
minimize memory access latency and maximize bandwidth
(feasible by the enabling technology, special interconnection
to and physical placement with respect to memory banks),
support AGAS and enable message-driven computation for
asynchronous management and latency mitigation, offer log-
ical mechanisms to support ensemble data processing in con-
junction with a billion like cores, and achieve highest energy
efficiency for memory access and processing.

5.3 Multithreading
Although the emergence of multithreaded architecture has

taken literally decades, its likely role in the future of comput-
ing, especially in such architecture structures as the EMP,
is significant. Multithreaded structures can be employed in
one simple and uniform organization to replace a number of
conventional mechanisms that are complicated in design and
profligate in their use of power. A multithreaded architec-
ture will incorporate register state for multiple threads of
execution that are active and operating concurrently with
single cycle context switching for minimum overhead.

5.4 Dataflow Instruction-Level Parallelism
Fine grain parallelism is exposed at the instruction level;

the EMP takes a radical departure from conventional prac-
tices in this regard to employ an alternative strategy for the
exploitation of instruction level parallelism for simplicity of
design and superior energy efficiency. A variant of the static
dataflow model of computation [14] is to be supported by the
EMP, in which a compiler-derived representation of expres-
sions computed by a thread is encoded in instruction stream
and utilized by the processor with almost no overhead. A
new control state that replaces the program counter with the
program control frame to manage out-of-order execution of
fine-grain operations will be investigated to reduce the gen-
eral O(n2) control state complexity to O(n), while retaining
availability of sufficient instruction level parallelism for local
latency hiding.

5.5 Message-Driven (Parcel) Computation
An innovative research class of message-driven comput-

ing mechanisms is the parcel (PARallel Control Element)
which includes first class objects as destinations and spec-
ifies threads to be instantiated as well as other types of

actions to be performed (e.g., atomic memory operations).
In support of parcel-driven computation the EMP architec-
ture will incorporate hardware mechanisms for the acquisi-
tion, buffering, and verification of parcels, as well as aiding
their transformation into thread instances or support more
primitive actions, such as hardware state examination and
modification for fault detection and handling. The architec-
ture will also provide hardware assist for conversion of data
structures representing remote actions to their representa-
tive parcels that will carry them out.

5.6 AGAS Translation
For purposes of efficiency and productivity, including sys-

tem support in the core processor for some form of dynamic
GAS management is required. Pure distributed memory
systems require application software to manage all inter-
process communication and hardware support for cache co-
herence, both time and energy cost heavy. PGAS provides
an environment for put/get semantics not requiring cache
coherence, while being sufficiently constrained in terms of
static allocation to permit easy routing decisions. However,
this comes at the cost of a wealth of applications and sys-
tem operational aspects that demand more dynamic behav-
ior, specifically the ability to migrate virtual objects across
physical space without altering the objects’ virtual names.

5.7 PRECISE: Variable-Length Binary ISA
A concept of unproven but potential value for reducing

bandwidth requirements of instruction fetch and as a conse-
quence power requirements with added benefits to storage
capacity at core-buffer, instruction cache, and main mem-
ory levels will be pursued based on an advanced form of
variable length binary instruction set architectures. Proces-
sor register extensions for collapsed instruction set encoding
(PRECISE) are described in [13].

5.8 Wide-Word Processing
Close proximity of logic to memory banks affords oppor-

tunity for optimized datapaths for higher bandwidth with
lower access latency offering best memory access perfor-
mance for low temporal locality access patterns and low-
est energy per access. Actions operate on heterogeneous
data structures (as opposed to scalars or SIMD-like opera-
tions), where the action to be performed on one element of
the structure is dependent on the state of that of another
within the structure. Graph processing where vertices are
represented as such structures may be greatly accelerated
with wide-word accesses and processing.

The EMP designed in accordance with these principles
shows promise of practical implementation of billion-core
machines in this decade.

6. CONCLUSIONS
We have presented the ParalleX model of computation, a

distributed parallel AMR application framework, and per-
formance results using this framework for a real-world physics
application. We note that the HPX implementation of PX is
available (upon request) under an open source license. The
performance and scalability of the new model of computa-
tion can be further improved through co-design of the un-
derlying execution hardware. We have delineated a feasible
and novel processing architecture, which provides a direct
support for most of the PX primitives. While it rivals many

Wide-word Struct ALU

. . .
Thread 0 registers

Thread N‐1 registers

…

Scratchpad

Memory Interface
Row Buffers

Dataflow
Control
State

Wide
Instruction

Buffer

Parcel
Handler

Thread
Manager

Memory Vault

Fault
Detection

and
Handling

Power
Management

Access
Control

AGAS
Translation

Datapaths
with

associated
control

Control-only
interfaces

PRECISE
Decoder

I
N
T
E
R
C
O
N
N
E
C
T

Figure 7: Architecture of the Embedded Memory Processor.

of the existing solutions in simplicity, it also offers a poten-
tial for increased power efficiency, robustness and security,
paving a viable path to the Exascale systems in the future.
As part of future work, we will concentrate on improving
scaling for multidimensional AMR applications on both mul-
ticore and distributed machines. In the hardware domain,
we will test the elements of the EMP on programmable logic
(FPGA) boards plugged into traditional computing nodes.
Promising results of these early experiments may result in
custom silicon implementation.

7. REFERENCES
[1] M. J. Berger and J. Oliger. Adaptive mesh refinement

for hyperbolic partial differential equations. J. Comp.
Phys., 53:484, 1984.

[2] D. Bonachea. Gasnet specification, tech report
(ucb/csd-02-1207), 2002.

[3] Boost: a collection of free peer-reviewed portable
C++ source libraries, 2010.

[4] S. Borkar. The exascale challenge. In VLSI Design
Automation and Test (VLSI-DAT), 2010
International Symposium on, pages 2 –3, apr. 2010.

[5] U. Consortium. UPC language specifications, v1.2,
tech report lbnl-59208, 2005 October.

[6] J. Draper et al. The architecture of the DIVA
processing-in-memory chip. In ACM International
Conference on Supercomputing (ICS’02), June 2002.

[7] R. Hornung et al. SAMRAI home page.
http://www.llnl.gov /CASC/SAMRAI/, 2010.

[8] K. Iobst, M. Gokhale, and B. Holmes. Processing in
memory: The Terasys massively parallel PIM array.
IEEE Computer, 28(4):23, Apr. 1995.

[9] H. Kaiser, M. Brodowicz, and T. Sterling. ParalleX:
An advanced parallel execution model for
scaling-impaired applications. Parallel Processing
Workshops, International Conference on Parallel
Processing Workshops, pages 394–401, 2009.

[10] L. Kalé, J. Phillips, and K. Varadarajan. Parallel and
Distributed Processing, chapter Application
performance of a linux cluster using converse, pages
483–495. Springer Berlin / Heidelberg, 1999.

[11] P. Kogge et al. ExaScale Computing Study:
Technology Challenges in Achieving Exascale Systems,
2008.

[12] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, V2.1, 2008.

[13] C. Michael, M. Brodowicz, and T. Sterling. Improving
code compression using clustered modalities. In
Proceedings of the 46th ACM Southeast Conference,
March 2008.

[14] G. Papadopoulos and D. Culler. Monsoon: An explicit
token-store architecture. In 17th International
Symposium on Computer Architecture, number 18(2)
in ACM SIGARCH Computer Architecture News,
pages 82–91, Seattle, Washington, May 28–31, June
1990.

[15] E. Schnetter. Carpet homepage.
http://www.carpetcode.org/, 2010.

[16] The C++ Standards Committee. Working Draft,
Standard for Programming Language C++, 2008.

