Louisiana State University

LSU Digital Commons

LSU Doctoral Dissertations Graduate School

November 2019

Managing Overheads in Asynchronous Many-Task Runtime
Systems

Bibek Wagle
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.Isu.edu/gradschool_dissertations

6‘ Part of the Other Computer Sciences Commons

Recommended Citation

Wagle, Bibek, "Managing Overheads in Asynchronous Many-Task Runtime Systems" (2019). LSU Doctoral
Dissertations. 5106.

https://digitalcommons.lsu.edu/gradschool_dissertations/5106

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU
Digital Commons. For more information, please contactgradetd@Isu.edu.

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_dissertations
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F5106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F5106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/5106?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F5106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

MANAGING OVERHEADS IN ASYNCHRONOUS
MANY-TASK RUNTIME SYSTEMS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science and Engineering

by
Bibek Wagle
B.E., Tribhuvan University, 2008
M.S., Teesside University, 2011
December 2019

Acknowledgments

First of all, heartfelt gratitude goes to my advisor Dr. Hartmut Kaiser, without whose
support and invaluable guidance this work would not have been produced in this shape. I
am also thankful to Dr. Bijaya B. Karki for being in my committee and for his support
throughout my time at LSU. I am also thankful to my committee members Dr. Konstantin
Busch and Dr. Jianhua Chen for their guidance and support.

I would like to thank Adrian for supporting me throughout the time I spent at LSU. I
am greatly thankful for the time you have spent painstakingly proofreading all my work.
I would also like to thank my friends at LSU for all their constructive discussions and
valuable suggestions and also other researchers with whom over the course of this study I
had the opportunity to collaborate with.

My gratefulness goes to my parents, Bimal and Sarita Wagle, who have always sup-
ported all my academic endeavors and for making all of this possible. A special thanks to
my wife, Sona, for all the love and support and for always standing by me throughout this
journey. I would like to thank my sister, Samjhauta and my brother in law Arun, for their

support throughout this journey.

i

Table of Contents

Acknowledgements ii
List Of Tables ..o v
List of Figures.o vi
ADSETACE oot ix
Chapter
1. Introduction i 1
1.1. Research Contributionso. e 4
1.2, Publications 5
1.3. Dissertation Outline 5
2. Background 6
2.1. HPX Runtime Systemoo i 7
2.2. Effects of Task Granularity in HPX 9
3. Active Message Coalescing 12
3.1. Parcel Coalescing in HPX. 13
3.2. Network Performance MetriCso 16
3.3. Experimental Results 19
B4, SUIMINATY . o .ttt e e et e e e e 28
4. Task Inlining 31
4.1. Task Inlining in Phylanx.......... ... 32
4.2. Performance Impact of Task Inlining 34
4.3. Inlining Threshold Estimation 49
A4, SUIMINATY . . oottt et e e e e e e e e e e e 58
5. Loop Iteration Chunking............... 59
5.1. Loop Chunking in HPX 59
5.2. Experimental Results 60
D30 SUININATY .« « o ettt ettt e et e e e e 66
6. Related Work. 69
T, Conclusion 73
Appendix
A, Supplementary Results. 75
B. Copyright Information 85
R erences . o 88

il

v

List of Tables

1.1, TOPBH00 by Year 1
3.1. Marvin node specifications. 19
4.1. Machine specifications 35
4.2. Problem sizes used in LRA 35
4.3. Problem sizes used in ALS. 43
4.4. Threshold (in ps) at which improvement tapers off 53
4.5. Overheads per HPX-future 54
4.6, Ain VALUES . .o 56
4.7. Average of \,,;, for various architectures L 56
4.8. Improvement within one percent of maximum with \,,;, set to 500 57
5.1. Range of threshold values in pus......... ... i 60
5.2. Processor specifications of machines used, 61

List of Figures

2.1.

2.2.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

4.1.

4.2.

4.3.

The modular structure of HPX runtime system 8

Execution time relative to sequential execution for the stencil
application in HPX for various grainsize iiiioiin.. 10

Diagrammatic representation of parcel coalescing 14

Scatter plot of the average network overhead per phase vs aver-
age execution time per phase for the toy application.......................... 21

Changes in average time per phase along with the average net-
work overhead for the toy application with various values of
number of parcels to coalesce in a single send and wait times 22

Time to reach the completion of a particular phase in the toy
application for various values of number of parcels to coalesce in
a single message with a wait time of 4000s.......... ... i i 23

Time to reach the completion of different iterations in the par-
quet application for various numbers of parcels coalesced in a
single message with a wait time of 4000us......... i 25

Average time per iteration for different numbers of parcels to
coalesce into a single message and increasing wait times before
flushing the parcel queue 26

Average network overhead per iteration for different numbers
of parcels to coalesce into a single message and increasing wait
times before flushing the parcel queue......... 27

Scatter plot of average network overhead vs average time per
iteration for the Parquet application 28

The workflow of Phylanx 32

Execution time, number of tasks executed, improvement and dis-
tance from maximum improvement for the Logistic Regression
example running problem LRA-P1 on one thread............................. 36

Execution time, number of tasks executed, improvement and dis-
tance from maximum improvement for the Logistic Regression
example running problem LRA-P1 on eight threads 39

vi

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

5.1

9.2.

5.3.

5.4.

Execution time, number of tasks executed, improvement and dis-
tance from maximum improvement for the Logistic Regression
example running problem LRA-P2 on one thread............................. 40

Execution time, number of tasks executed, improvement and dis-
tance from maximum improvement for the Logistic Regression
example running problem LRA-P2 on eight threads 42

Execution time, number of tasks executed, improvement and
distance from maximum improvement for the Alternating Least
Squares example running problem ALS-P1 on one thread..................... 44

Execution time, number of tasks executed, improvement and
distance from maximum improvement for the Alternating Least
Squares example running problem ALS-P1 on eight threads 45

Execution time, number of tasks executed, improvement and
distance from maximum improvement for the Alternating Least
Squares example running problem ALS-P2 on one thread..................... 47

Execution time, number of tasks executed, improvement and
distance from maximum improvement for the Alternating Least
Squares example running problem ALS-P2 on eight threads 48

Difference between improvement using current threshold and the
threshold that attains maximum improvement for LRA running
on one and eight threads along with regression line........................... 51

Difference between improvement using current threshold value
and the threshold value that attains maximum improvement for
ALS running on one and eight threads along with regression line 52

Sweep of chunk sizes for various threads on Skylake and Haswell
machines using the static chunking policy in HPX 63

Sweep of chunk sizes for various threads on Sandybridge and
Bulldozer machines using the static chunking policy in HPX.................. 64

Memory bandwidth obtained from running the STREAM TRIAD
benchmark on Skylake and Haswell with static chunking policy
and using chunksize obtained by setting A, at 520............... 67

Memory bandwidth obtained from running the STREAM TRIAD
benchmark on Sandybridge and Bulldozer with static chunking
policy and using chunksize obtained by setting A, at 520 68

Vil

Al

A2

A3,

A4

A5,

A.6.

AT

AS8.

A9

A.10.

Execution time, number of tasks executed, improvement and dis-
tance from maximum improvement for the Logistic Regression
example running problem LRA-P1 on two threads 75

Execution time, number of tasks executed, improvement and dis-
tance from maximum improvement for the Logistic Regression
example running problem LRA-P1 on four threads 76

Execution time, number of tasks executed, improvement and dis-
tance from maximum improvement for the Logistic Regression
example running problem LRA-P2 on two threads 7

Execution time, number of tasks executed, improvement and dis-
tance from maximum improvement for the Logistic Regression
example running problem LRA-P2 on four threads 78

Execution time, number of tasks executed, improvement and
distance from maximum improvement for the Alternating Least
Squares example running problem ALS-P1 on two threads.................... 79

Execution time, number of tasks executed, improvement and
distance from maximum improvement for the Alternating Least
Squares example running problem ALS-P1 on four threads 80

Execution time, number of tasks executed, improvement and
distance from maximum improvement for the Alternating Least
Squares example running problem ALS-P2 on two threads.................... 81

Execution time, number of tasks executed, improvement and
distance from maximum improvement for the Alternating Least
Squares example running problem ALS-P2 on four threads 82

Difference between improvement using current threshold value
and the threshold value that attains maximum improvement for
LRA running on two and four threads along with regression line.............. 83

Difference between improvement using current threshold value
and the threshold value that attains maximum improvement for
ALS running on two and four threads along with regression line 84

viil

Abstract

Asynchronous Many-Task (AMT) runtime systems are based on the idea of dividing
an algorithm into small units of work, known as tasks. The runtime system is then respon-
sible for scheduling and executing these tasks in an efficient manner by taking into account
the resources provided to it and the associated data dependencies between the tasks. One
of the primary challenges faced by AMTs is managing such fine-grained parallelism and
the overheads associated with creating, scheduling and executing tasks. This work de-
velops methodologies for assessing and managing overheads associated with fine-grained
task execution in HPX, our exemplar Asynchronous Many-Task runtime system. Known
optimization techniques, viz. active message coalescing, task inlining and parallel loop it-
eration chunking are applied to HPX. Active message coalescing, where messages bound
to the same destination are aggregated into a single message, is presented as a solution
to minimize overheads associated with fine-grained communications. Methodologies and
metrics for analyzing fine-grained communication overheads are developed. The metrics
identified and implemented in this research aid in evaluating network efficiency by giving
us an intrinsic view of the underlying network overhead that would be difficult to measure
using conventional methods. Task inlining, a method that allows runtime systems to man-
age the overheads introduced by a large number of tasks by merging tasks together into
one thread of execution, is presented as a technique for minimizing fine-grained task over-
heads. A runtime policy that dynamically decides whether to inline a task is developed and
evaluated on different processor architectures. A methodology to derive a largely machine
independent constant that allows controlling task granularity is developed. Finally, the
machine independent constant derived in the context of task inlining is applied to chunk-
ing of parallel loop iterations, which confirms its applicability to reduce overheads, in the

context of finding the optimal chunk size of the combined loop iterations.

1X

Chapter 1. Introduction

The breakdown of Dennard scaling [1] and slowdown in Moore’s Law [2] has resulted in
a paradigm shift from the uni-processor era towards multi-core and many-core technolo-
gies. Following this shift in industry, today’s supercomputers rely on many-core machines
and hardware accelerators to achieve the FLOPS (Floating Point Operations Per Second)
advertised. Hardware accelerator options such as GPUs and Xeon Phis increase the core
count by orders of magnitudes. It is evident from the trends seen in table 1.1 that future
machines will continue to increase intra-node concurrency via the addition of cores and ac-
celerators. Keeping in line with the changes in the hardware, the focus of scientific software
development is changing from relying on an increase in the clock speed of newer processors
to exploiting parallelism from these new highly concurrent architectures.

Many modern HPC(High Performance Computing) applications use a hybrid program-
ming model where MPI 3] is responsible for inter-node operations whereas another thread-
ing library such as OpenMP [4] is responsible for intra-node parallelism. MPI, which is
an abbreviation for Message Passing Interface, is a widely used standard for distributed
information exchange. First released in 1994, MPI is an example of SPMD (single program
multiple data) parallelism where each node in the distributed architecture executes its own
copy of the application and communicates with other nodes via message passing. MPI ini-
tially only supported synchronous messages which was later extended to support for sending
asynchronous messages with the release of version 2 of the MPI standard. OpenMP, an
abbreviation for Open Multi-Processing, is a standard for shared memory multiprocessing.

OpenMP employs a fork-join method of parallelism where a master thread forks a number

Table 1.1. TOP500 by Year

Year 2005 2010 2015 2019
Machine BlueGene/L | Tianhe-1A | Tiahhe-2 | Summit
Number of Cores | 131,072 186,368 3,120,000 | 2,397,824
Number of Nodes | 65,536 7,168 16,000 4,356

of slave threads in order to perform parallel tasks, at the end of which the slave threads join
with the master thread. Since version 3 of OpenMP standard, support for asynchronous
tasks have been added to OpenMP. Furthermore, OpenMP 4 provided directives to offload
computation to accelerators. Scientific software development for HPC largely follows the
MPI+4X model where MPI is paired with some form of shared memory parallelism such as
OpenMP, C++ threads, Pthreads or even hardware accelerators such as GPUs.

Asynchronous Many-Task(AMT) runtime systems have been gaining popularity in re-
cent years as a possible solution towards effective utilization of available concurrency [5].
These runtime systems are founded on the idea of decomposing an algorithm into units of
work, known as tasks, and executing them asynchronously. The amount of work contained
in a task determines the granularity of the task. A task can be fine-grained containing only
a few instructions or coarse-grained containing many instructions. The granularity of tasks
plays a vital role in efficient utilization of hardware resources. Fine-grained tasks allow
the total computation to be distributed evenly among the processors which enables better
load balancing. In the event of an unforeseen delay in execution of a task, fine-grained
tasks are preferable as the amount of work available in the system is abundant so that the
resources can stay busy whereas a coarse-grained program experiencing the same delay will
not be able to keep all of its resources busy and therefore stall the program execution. Fine-
grained tasks also allow for flexibility in managing latencies. For example, a fine-grained
tasks can be scheduled during the time another task is waiting for a resource to be ready.
On the other hand, larger task granularity would not be able to effectively fill in the small
gaps in CPU utilization due to lack of tasks small enough to execute during such period.
Hence, fine-grained parallelism exposed by Asynchronous Many-Task runtimes enables ef-
fective load balancing and latency management that has the potential for better system
utilization [6-8].

The benefits of employing fine-grained tasks can be nullified by the overheads associ-

ated with the creation and management of these tasks. Each task has an overhead cost

associated with it that can add up to significant portion of the overall computation time.
Overheads are defined as excess work that needs to be carried out in order to perform
actual computation. Overheads can also be thought of as the cost of parallelization or the
cost that would not exist if the same application was run serially. The granularity of a
task is an important factor when talking about overheads of the task. For example, if the
granularity of the task is small, the overheads associated with the task may be comparable
to the amount of work performed by the task. In such a case, large portion of compu-
tational time is spend on overheads. Conversely, in the case of coarse-grained tasks, the
overheads may be a small fraction of the overall computation contained in the task. How-
ever, as the coarseness of the task increases, parallelism is negatively impacted. The key
to deal with the overheads is to amortize the cost of overheads with useful computation.
Therefore, the amount of work performed by a task should be large enough such than the
overheads of creating and managing the task itself does not account for significant amount
of computational time. Since a larger task may results in lower utilization whereas smaller
tasks may result in overheads accounting for significant amount of overall application time,
there needs to be a delicate balance between the granularity of the task and the amount of
parallelism in the system. In order to efficiently utilize today’s highly concurrent systems,
effective management of overhead costs of fine-grained tasks is the key.

Overheads in the case of Asynchronous Many-Task runtimes can be broadly classified
into two categories: those that pertain to creation and management of tasks that are
executed locally in the node where the task was created, and those that pertain to tasks
that are executed in a node different from the one where the task was created. In the
context of this work, we refer to the two categories of tasks as locally executed tasks and
remotely executed tasks. Overheads incurred by locally executed tasks arise from creation
and management of these tasks. In the context of remotely executed tasks, additional
overheads specific to remote execution must also be accounted for such as converting the

task into an active message, serialization, transporting to the destination, de-serialization

and recreation of the original task at the destination.

This work provides methodologies for assessing and managing overheads associated
with fine grained task execution in HPX, our exemplar asynchronous many task runtime
system. Known optimization techniques, viz. active message coalescing, task inlining and
parallel loop iteration chunking are applied to HPX. In the context of remotely executed
tasks, active message coalescing is presented as a means to improve application perfor-
mance. Methodologies and metrics for analyzing the overheads associated with transmis-
sion and reception of active messages in the context of HPX is developed. With regards
to locally executed tasks, task inlining, where a child task is executed by the parent, is ex-
plored. A dynamic policy that decide whether to inline a particular task based on profiling
information is also presented. Methodologies for determining a largely machine indepen-
dent constant , A, that allows controlling the granularity of tasks is also presented. \,,in
allows establishing the lower bound on the size of the task and denotes the point where the
effects of overheads have been amortized. Furthermore, chunking of parallel loop iterations
is applied in the context of HPX. Existing policy for automatically chunking parallel loops

in HPX is extended to use \,,;, derived in the context of task inlining.

1.1. Research Contributions
This dissertation makes the following contributions:
e Identifying metrics and runtime characteristics that relate to the overhead associated
with fine-grained communication in HPX.
e Designing a dynamic policy that makes task inlining decisions.
e Showing the impact of task inlining on different processor architectures.
e Providing a methodology to derive largely architecture independent constant A\,
that allows controlling task granularity.
e Providing a methodology for extending Autochunking policy in HPX to determine

the granularity of combined loops using A,,;, derived in the context of task inlining.

1.2. Publications

Parts of this dissertation contains previously published materials from IEEE and ACM
that appeared in the following publications which have been incorporated throughout the
dissertation. Permissions for reuse detailed in the Appendix.

e B. Wagle et al., "Methodology for Adaptive Active Message Coalescing in Task Based
Runtime Systems," 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), Vancouver, BC, 2018, pp. 1133-1140.

e B. Wagle et al., "Runtime Adaptive Task Inlining on Asynchronous Multitasking Run-
time Systems," 48th International Conference on Parallel Processing (ICPP 2019),

Kyoto, Japan, 2019.

1.3. Dissertation Outline

This rest of the dissertation is organized as follows: Chapter 2 presents additional back-
ground information along with an overview of HPX, the exemplar Asynchronous Many-Task
runtime system used in this dissertation. Chapter 3 presents details pertaining to active
message coalescing in HPX along with metrics and runtime characteristics related to re-
motely executed task. Chapter 4 presents design and implementation of dynamic policies
for task inlining followed chapter 5 where an automatic parallel loop chunking policy is pre-
sented. A survey of related work is presented in chapter 6 and finally chapter 7 concludes

the dissertation.

Chapter 2. Background

In an ideal strong scaling scenario, a parallel application would run twice as fast by doubling
the number of processors. However, Amdahl’s law |9, 10|, which states that scalability of
an application is limited by the serial portion of the code, imposes a theoretical upper limit
on the speedup a parallel application can achieve. Similarly, the concept of weak scaling is
introduced by Gustafson’s law [11] and states that as the problem size is increased, parallel
work increases accordingly. In an ideal weak scaling scenario an application would be able
to handle double the amount of work if the resources are doubled. However, ideal scaling
behaviors are not seen in practice and deviation from ideal can be broadly attributed to
the following factors as outlined in the ParalleX [6] model:

e Starvation or the lack of concurrent work available in the system to keep all of the

resources busy

e Latencies related to accessing services and resources

e Overheads of parallel execution which would not be present in sequential execution

e Waiting for contention resolution due to over-subscription of shared resources

All the above factors contribute to the compute resources being idle either due to lack
of work, delays in accessing services or waiting for a shared resource to be available. The
overheads of parallel execution where the runtime system performs work unrelated to the
actual computation to achieve parallel execution also adds additional delays. HPX [7], an
Asynchronous Many-Task runtime system used as an exemplar runtime system throughout
the dissertation, is the first implementation of the ParalleX model and attempts to allevi-
ate application scalability issues in order to extract maximum possible parallelism from the
system. HPX exposes a concurrency and parallelism API that is consistent with the ISO
C++ standard. HPX parallel applications can run on both a single machine as well as a
cluster with hundreds of thousands of nodes. A detailed description of HPX and its imple-
mentation details can be found in the following publications [6,7,12]. A gentle overview of

HPX useful to the comprehension of this dissertation is provided in the subsequent section.

2.1. HPX Runtime System

The design of HPX mainly revolves around using fine-grained tasks running on top of kernel
threads via a lightweight scheduler that supports work stealing, applying local constraint
based synchronization among tasks rather than global barriers, using active messages [13|
for executing tasks wherever data is located and a mechanism for addressing any object
globally. Fine-grained asynchronous tasks allows for better flexibility in keeping the under-
lying CPU busy while another task is waiting on a resource effectively hiding the latencies
associated with memory access, network etc. The use of local constraint based synchroniza-
tion instead of global barriers allows parts of the application where synchronization is not
needed to avoid waiting. The constraint on synchronization is placed locally, for example
based on data availability, which makes sure only those tasks that are waiting for some data
to be available are suspended. Unlike traditional message-passing scenarios, using active
messages in HPX allows tasks to be executed in the location of the data rather than moving
data to where the task is located avoiding data movement. Furthermore, each object in
HPX is assigned a Global Identifier(GID) that is maintained throughout the lifetime of the
object even if it is moved between nodes in the system.

The modular structure of HPX is shown in figure 2.1. HPX consists of a T hread Scheduler
responsible for scheduling lightweight tasks, a Per formance Counter framework used for
instrumentation purposes, a Parcel Transport Layer for handling message passing and re-
mote method invocations, lightweight Local Control Objects (LCOs) for synchronization
among tasks and an Active Global Address Space (AGAS) for addressing object across
nodes. The Per formance Counter framework is able to gather performance information
from the whole system which can be used for the purpose of debugging, post-mortem
analysis as well as for runtime adaptive purposes.

HPX exploits parallelism by executing lightweight tasks scheduled on top of the kernel
threads. By default, HPX creates one kernel thread per core. The HPX scheduler schedules

the lightweight tasks on top of these kernel threads. HPX tasks are non preemptive and

Local Control |, . Thread
Objects N ’ Scheduler

I

I

Performance

Counters

-

Active Global |, | Parcel Trans-
Address Space | | port Layer

-

Figure 2.1. The modular structure of HPX runtime system

are stopped either when they run to completion or voluntarily yield their execution. An
implication of the non-preemptive nature of HPX tasks is the fact that the tasks have to
be short-lived or voluntarily yield occasionally to allow for fair scheduling. A task in HPX
is also called HPX-Thread as it is a fully conferment implementation of the C++ standard
thread, has its own stack and support calls to yield , suspend and resume [12].

Asynchrony in HPX is managed via futures [7,14]. A future is a placeholder for the
result of some computation that is not yet ready. A task requesting the result of a future is
suspended if the result is unavailable. When the future becomes ready, wherein the results
of the computation is available, the suspended tasks are resumed. Another important
feature of HPX is the dataflow [15,16| utility. HPX makes use of dataflow objects for
managing data dependencies. A dataflow waits until a provided set of futures have become
ready before executing a predefined callable which relies on the results referenced by the
futures. Futures and dataflows are the prominent Local Control Objects in HPX among
others such as mutexes, spin-locks, barriers and semaphores.

Remote task invocation in HPX is performed via parcels. A parcel is a form of an active
message [13]. A parcel is created when a method, called action in HPX terminology, is called

remotely. A parcel has four components: the destination address which is the location

where the method is to be executed, action which is the method to execute, arguments are
the parameters of the method and continuations are optional objects that are executed
after the main method in the parcel terminates. In order to transmit a parcel over the
network, a parcel goes through a serialization process and is converted into a stream of
bytes which is then transmitted using existing network protocols. At the receiving end, a
de-serialization process reconstructs the parcel from the received sequence of bytes. The
parcel is then converted into a task and placed in the scheduler queue for execution. The
parcel layer is responsible for creating the parcels as well as converting a received parcel
into a task.

HPX provides a system wide support for gathering performance information, known
as the performance counter framework. This feature is used to extract information about
the state of the application and runtime and is useful for instrumentation and debug-
ging purposes. In addition, HPX and the performance counter framework integrate with
APEX(Autonomic Performance Environment for eXascale) [17], which provides additional
measurements and a policy engine that enables runtime adaptive capabilities. APEX is
an external library which gathers performance information from the runtime system. This
information can then be recorded for post-mortem analysis or used as inputs to the APEX
policy engine. APEX uses an event based introspection API where an event is triggered
either periodically or at a defined point in the application code. Users can define policies
which respond to these events based on the current state of an application.

This work assesses overheads associated with fine-grained task execution in HPX and
highlights methodologies to control the granularity of the tasks. In the subsequent section
we will look at how the granularity of tasks effects the performance of a parallel application

written in HPX.

2.2. Effects of Task Granularity in HPX
The granularity of the tasks can dictate the overall performance of an application. In this

section, we will look at how the performance a HPX parallel application varies when the

w
o

= 4
.S
+~ N
= :
g-é 2.5 1
~ o
= ¢
'g :
< 201
o &
<5} B
n
S 5
o 1.5 B
= E "
+~ K b
o] °
g 5
1.0 1 "-.
g [}
g e, o
H "o @
g0..0-....'..,._......4-"‘"."
-_g 05 T '..Q.‘..‘..‘..-.‘,..
Q
[}
A
€9
0.0 -+ ALY LR | LR | LR | HEL L | HELL L |
102 102 104 10° 108 107 108

Grainsize

Figure 2.2. Execution time relative to sequential execution for the stencil application in
HPX for various grainsize plotted using the blue line. All data points below 1.0 represent
faster execution compared to sequential execution. The red vertical line indicates the
grainsize that would be chosen if the total work was equally divided among the processing
units.

granularity of the task is varied. For this demonstration, we use the one dimensional heat
stencil! example in the HPX repository?. In the stencil example, the data points were
partitioned such that one HPX task is created for each partition. The grainsize or the
amount of work performed by each HPX task in the example can be controlled by varying
the data points per partition.

Figure 2.2 shows the execution time relative to sequential execution time for the stencil
example running on 16 cores with a total of 100000000 datapoints. The grainsize in fig-
ure 2.2 is controlled by controlling the data points per partition. For example, a grainsize

of 1000 represents 1000 data points per partition. Larger grainsizes indicate fewer tasks

Thttps://github.com/STEIIAR-GROUP /hpx/tree/master /examples/1d _stencil/1d _stencil
Zhttps://github.com/STEIAR-GROUP /hpx

10

of longer duration were executed whereas smaller grainsize indicate more tasks of shorter
duration were executed.

It is seen from figure 2.2 that increasing the granularity of the task improves application
performance up until a certain point after which the improvement flattens. As the granu-
larity is further increased, the performance degrades. The portion of the graph towards the
left is dominated by overheads associated with parallel execution as the work contained in
the task is not able to amortize the cost of overheads. The portion of the graph towards
the right is dominated by starvation where not enough parallel work is available in the
system to keep all the processing units busy. It is also seen from figure 2.2 that the region
between the points where the cost of overheads is amortized and starvation kicks in, better
performance is seen with lower grainsize. The red vertical line in the figure indicates the
grainsize that would be chosen if the total work was equally divided among the processing
units as is done traditionally. However, this may not be the optimal grainsize as seen from
the stencil example. Increasing the granularity beyond a limit can result in degradation of
performance. In chapter 4 of the dissertation, with regards to locally executed tasks, we
will look at methodologies for estimating minimum granularity of HPX tasks in the context

of task inlining.

11

Chapter 3. Active Message Coalescing

In this chapter, we explore overheads associated with tasks that are executed on a node
other than the one where it was created. As we move towards exascale computing, where
tens of thousands of nodes will work together in solving complex scientific problems, asyn-
chronous many-task runtime systems have carved out its own space alongside the de-facto
standard of High Performance computing, MPI [3]. The success of Asynchronous Many-
Task runtime systems is based on the fact that most algorithms can be decomposed into
fine grained units of work that can be executed by the runtime system. A side effect of
creating fine grained units of work in a large scale distributed application is fine-grained
inefficient communication patterns. If we are sending a large number of messages in quick
succession, the overheads associated with fine-grained tasks rapidly aggregates. In the
context of Asynchronous Many-Task runtime system, where fine grained communication is
ubiquitous, reduction of overheads introduced by the transmission of information is vital.
Any improvements that can be made in this context have the potential to improve the
overall execution time of the distributed application.

Coalescing messages allows users to combine small messages into large ones that effec-
tively send the same amount of data but keep the per message overheads at a minimum.
Although programmers can manually coalesce messages to optimize their applications, the
effort required to correctly achieve this is quite high and is practical only in small and sim-
ple applications. Recent work such as Active Pebbles [18] , AM++ [19] and Charm-++ [20],
have implemented some form of message coalescing solutions provided by runtime systems.
Such solutions are largely beneficial in terms of reducing program complexity and cod-
ing time. A programmer would simply enable message coalescing and the runtime would

intelligently coalesce messages bound to the same destination.

Parts of this chapter were previously published as B. Wagle, S. Kellar, A. Serio and H. Kaiser, "Methodology
for Adaptive Active Message Coalescing in Task Based Runtime Systems," 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), Vancouver, BC, 2018, pp. 1133-1140.
(©) 2018 IEEE. Reprinted with permission.

12

In the rest of this chapter, we look at the implementation of message coalescing in HPX.
Furthermore,we look at methodology for estimating the overheads associated with fine-
grained communication in HPX. We devise metrics that relate to the overheads associated
with active messages in HPX. We use message coalescing as a technique to reduce active
message overheads in HPX and show that the metrics derived in this chapter are useful to
estimate the cost of overheads associated with sending and receiving large number of active
messages in HPX. The metrics and techniques defined in this chapter have the potential to
be used as a basis for the adaptive tuning of a broad set of messaging parameters. In the
following section, we look at the implementation details regarding active message coalescing

in HPX.

3.1. Parcel Coalescing in HPX

A parcel [21] is a form of active message in HPX as described in section 2.1. Individual
parcels are grouped together to form a larger coalesced message which is reconstructed into
the original entities at the receiving end. Figure 3.1 shows a diagrammatic representation
of parcel coalescing in HPX. Here, individual parcels are grouped together to form a larger
message containing the coalesced parcels. The coalesced message is then serialized and
sent to the destination. At the destination, individual parcels are reconstructed and placed
in the HPX scheduler queue. Implementation details and further information regarding
parcels and serialization in HPX can be found in [12].

One caveat of parcel coalescing is determining how many parcels to coalesce in a single
send. A coalesced parcel can be defined by either the size of the buffer, number of parcels,
a timeout or any combination of these criteria. The design of parcel coalescing in HPX
revolves around two parameters. First, the length of the parcel queue and second, the
wait time. The length of the parcel queue outlines a suggested number of parcels to be
coalesced before being sent. The wait time dictates the number of microseconds to wait
for the queue to be full before sending the current queue of parcels as one message. Hence,

coalesced parcels are sent either when the parcel queue is full or when the wait time expires.

13

alnlalo)

Coalesced Message]

: [Deserlahzatlon
[Coalesced Message]

Serialization P - Parcels ‘ é é é
............ Cocaliv s R T

Figure 3.1. Diagrammatic representation of parcel coalescing

Additionally, a limit on the maximum size of the buffer is applied in order to avoid memory
overflow errors. The algorithm for parcel coalescing in HPX is shown in algorithm 1.

The accuracy of the wait timer responsible for signaling the send operation for the
parcels waiting in the queue is an important factor in the overall design of the parcel
coalescing module. The wait timer is designed using the deadline timer from the Boost!
library that allows the timing mechanism to run in its own dedicated hardware thread. It
is not desirable to implement the wait timer as a HPX task because HPX tasks are not
preemptive as discussed in section 2.1. This means that HPX tasks can only be stopped at
completion or through voluntary yielding. In a scenario where the HPX scheduler is busy
due to large number of tasks, the task responsible for wait timer may not be scheduled
immediately resulting in lower accuracy of the wait timer. In order to verify the accuracy
of the wait timer, an experiment was performed where a timer was created and set to
expire after certain interval. It was observed from the data obtained from the experiment
that the wait timer fires within on average of 33us of the desired fire time. This guarantees
that on an average, the wait temer in the HPX parcel coalescing plugin expires within 33us
of the desired wait time.

Another important design consideration when implementing parcel coalescing is when
to disable it. The communication pattern of a real life application may change through-

out its lifetime. The application may generate large number of parcels at certain points,

Thttps: //www.boost.org/

14

Algorithm 1 Parcel coalescing policy

num_ parcels > number of parcels to coalesce in a message
interval > wait time in microseconds
parcel state > state of arriving parcel
time last parcel > time since last parcel

if time last parcel > interval then
SEND _PARCEL()

end if
switch parcel state do
case First:

TIMER.START (interval)
QUEUE _PARCEL()

case !First||Last:
QUEUE_ PARCEL()

case Last: > queue is full
TIMER.STOP()
SEND_PARCEL() > send queued parcels as one

whereas, there may be periods in the application where the number of parcels generated is
small. In the design of the parcel coalescing module in HPX, coalescing is performed only if
the time between parcel generation is less than the wait time. This feature effectively dis-
ables parcel coalescing in cases where parcel generation is sparse. It is important to disable
parcel coalescing in cases where parcel generation is sparse because the performance will be
negatively impacted when the application has to wait for the parcel queue to be flushed by
the wait timer. Furthermore, since parcel coalescing is beneficial in the specific case where
large number of parcels are generated, parcel coalescing is implemented in the form of a
plug-in rather than incorporating it into the core of HPX. This keeps HPX flexible by only
enabling parcel coalescing plug-in when needed. Also, parcel coalescing has been imple-
mented on per action basis and is effective only if explicitly enabled for a particular HPX ac-
tion. Parcel coalescing for a particular action can be enabled with minimal change to the ex-
isting code by adding the macro HPX ACTION USES MESSAGE COALESCING()
as seen in line 8 in listing 3.1.

During the course of this study, the following performance counters specific to parcel

coalescing were incorporated into HPX:

15

e /coalescing/count/parcels that return the number of parcels associated with a partic-
ular action,
e /coalescing/count/messages that return the number of messages generated for a par-
ticular action,
e /coalescing/count/average-parcels-per-message that return the average number of
parcels sent in a message for a particular action,
e /coalescing/time/average-parcel-arrival that return the average time between arriving
parcels for a particular action,
e /coalescing/time/parcel-arrival-histogram that return a histogram representing the
gap between parcel arrival for a particular action.
Performance counters specific to coalescing provide intrinsic information about the applica-
tion that can be used for debugging and optimization purpose. The performance counters
listed above were used for preliminary analysis of parcel coalescing. The above counters

also aided in debugging our implementation of parcel coalescing.

3.2. Network Performance Metrics

This work develops metrics for measuring network overhead of an application. In the
context of this work, overhead is defined as the time spent processing information to be
communicated across the network. This processing time we call background work. While
informative, the time spent processing background work is insufficient to gauge the effects
network overhead on the application. An increase in time spent on background work may
only indicate a change in application state, eg. communication phase of an application.
To understand the influence of overhead, we must look at the ratio of background work to
overall execution time. The background work time paired with the overall execution time
of the application determines the actual influence of network overheads. The proportion of
time spent on overheads to the overall runtime indicates whether significant improvements
are possible via a reduction of network overheads.

Parcel coalescing is useful as it reduces the overhead cost per message. In an applica-

16

tion that sends millions of messages during its execution, this reduction will be extremely
beneficial. After implementing parcel coalescing, we analyzed its effect on the overhead
associated with sending and receiving messages. We used two applications, Parquet [22]
and a toy application. Details about these applications are provided in section 3.3. Using
the Performance Counter Framework provided by HPX, we obtained intrinsic information
about the applications in real time. This section details the metrics we gathered to evaluate

the network overheads.

3.2.1. Execution Time

We first measured the execution time of our test applications while varying the number
of parcels to coalesce in a single message and the interval to wait before flushing the queued
parcels. The size of the problem in each run was kept constant, hence the same number of
parcels were generated in each run. The difference between runs was simply the number of

messages sent as determined by the coalescing parameters.

3.2.2. Task Duration
Next we looked at the overall time spent on executing each HPX-thread or tasks in-

cluding the overhead. We define task duration using the following equation:

ty = thw (3.1)
where Y t fune is the total time spent by the HPX scheduler executing each HPX-thread.

3.2.3. Task Overhead

We then looked at the average time spent on thread management for each HPX-thread
or tasks. All communication in HPX is done via tasks. Task overhead [23], is obtained
from the /threads/time/average-overhead performance counter. We calculate task overhead

using the following equation:

Z tfunc — Z tewec
t, = (3.2)

ny

17

where) tegec is the time spend by the HPX scheduler doing useful work and) ¢y is the
task duration as defined in equation 3.1 and n; is the number of executed HPX threads.
We observed a positive correlation between task overhead and overall execution time of our

test applications for various coalescing parameters.

3.2.4. Background Work Duration

After establishing that task overhead has a positive correlation with the overall execu-
tion time, we separated the network related overhead from other overheads. HPX performs
network related tasks such as packaging a parcel into a message, serialization, handshaking
and locality resolution in the form of background work. We define total time spent doing
background work as the background work duration and it is obtained using the following
equation:

lpg = Z 2fbackgroundfwork (33>

Background work duration can be queried using the performance counter /threads/background-

work and was added to HPX as a part of this study.

3.2.5. Network Overhead

The network overhead, obtained from the performance counter /threads/background-
overhead, is the ratio of thread background work duration to task duration. HPX measures
> thackground-work, the running sum of time spent on performing network related duties of
each HPX-thread, and > g, the running sum of total time to complete each HPX-thread.

Network Overhead is shown in equation 3.4.

Z Zfbackgrounclfwor‘k
Non =
>t pune

(3.4)

Here, > thackground—work 1S the total time spent performing network related work and) ¢ fune
is the total time to reach the completion of each HPX-thread. The network overhead

performance counter, /threads/background-overhead was added to HPX as a part of this

18

Appendix B. Copyright Information

. Copyright N .
§8 cemnee RightsLink EEm G0

@ Center
<$IEEE

Requesting
permission
to reuse
content from
an IEEE
publication

85

7
£acny

N

ACM Information for Authors

‘ Author Rights | FAQ

ACM Author Rights

ACM exists to support the needs of the computing community. For over sixty years ACM has developed
publications and publication policies to maximize the visibility, impact, and reach of the research it publishes
to a global community of researchers, educators, students, and practitioners. ACM has achieved its high
impact, high quality, widely-read portfolio of publications with:

o Affordably priced publications
o Liberal Author rights policies

o Wide-spread, perpetual access to ACM
publications via a leading-edge technology
platform

« Sustainability of the good work of ACM that
benefits the profession

CHOOSE

Authors have the option to choose the level of rights management they prefer. ACM offers three
different options for authors to manage the publication rights to their work.

o Authors who want ACM to manage the rights and permissions associated with their work,
which includes defending against improper use by third parties, can use ACM’s traditional
copyright transfer agreement.

« Authors who prefer to retain copyright of their work can sign an exclusive licensing agreement,
which gives ACM the right but not the obligation to defend the work against improper use by
third parties.

« Authors who wish to retain all rights to their work can choose ACM's author-pays option, which
allows for perpetual open access through the ACM Digital Library. Authors choosing the
author-pays option can give ACM non-exclusive permission to publish, sign ACM's exclusive
licensing agreement or sign ACM's traditional copyright transfer agreement. Those choosing to
grant ACM a non-exclusive permission to publish may also choose to display a Creative
Commons License on their works.

POST

Authors can post the accepted, peer-reviewed version prepared by the author-known as the "pre-print"-
to the following sites, with a DOI pointer to the Definitive Version of Record in the ACM Digital Library.

e On Author's own Home Page and

« On Author's Institutional Repository and

« In any repository legally mandated by the agency funding the research on which the work is
based and

« On any non-commercial repository or aggregation that does not duplicate ACM tables of
contents, i.e., whose patterns of links do not substantially duplicate an ACM-copyrighted
volume or issue. Non-commercial repositories are here understood as repositories owned by
non-profit organizations that do not charge a fee for accessing deposited articles and that do
not sell advertising or otherwise profit from serving articles.

DISTRIBUTE

Authors can post an Author-Izer link enabling free downloads of the Definitive Version of the work
permanently maintained in the ACM Digital Library

e On the Author's own Home Page or

o Inthe Author's Institutional Repository.

REUSE

Authors can reuse any portion of their own work in a new work of their own (and no fee is expected) as
long as a citation and DOI pointer to the Version of Record in the ACM Digital Library are included.

« Contributing complete papers to any edited collection of reprints for which the author is not the
editor, requires permission and usually a republication fee.

Authors can include partial or complete papers of their own (and no fee is expected) in a dissertation as
long as citations and DOI pointers to the Versions of Record in the ACM Digital Library are included.
Authors can use any portion of their own work in presentations and in the classroom (and no fee is
expected).

o Commercially produced course-packs that are sold to students require permission and possibly
a fee.

CREATE

ACM's copyright and publishing license include the right to make Derivative Works or new versions. For
example, translations are "Derivative Works." By copyright or license, ACM may have its publications
translated. However, ACM Authors continue to hold perpetual rights to revise their own works without
seeking permission from ACM.

« If the revision is minor, i.e., less than 25% of new substantive material, then the work should
still have ACM's publishing notice, DOI pointer to the Definitive Version, and be labeled a
"Minor Revision of"

« If the revision is major, i.e., 25% or more of new substantive material, then ACM considers this
a new work in which the author retains full copyright ownership (despite ACM's copyright or
license in the original published article) and the author need only cite the work from which this
new one is derived.

Minor Revisions and Updates to works already published in the ACM Digital Library are welcomed with
the approval of the appropriate Editor-in-Chief or Program Chair.

RETAIN

Authors retain all perpetual rights laid out in the ACM Author Rights and Publishing Policy, including, but
not limited to:

« Sole ownership and control of third-party permissions to use for artistic images intended for
exploitation in other contexts

« All patent and moral rights
« Ownership and control of third-party permissions to use of software published by ACM
Have more questions? Check out the FAQ.

back to top

References

1]

2]
3]

4]

[5]

[6]

7]

8]

19]

[10]

[11]

[12]

[13]

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimensions. IEEFE Journal
of Solid-State Circuits, 9(5):256-268, Oct 1974.

Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

Message Passing Forum. Mpi: A message-passing interface standard. Technical report,
Knoxville, TN, USA, 1994.

Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard api for shared-
memory programming. [EEE Comput. Sci. Eng., 5(1):46-55, January 1998.

Peter Thoman, Kiril Dichev, Thomas Heller, Roman Iakymchuk, Xavier Aguilar,
Khalid Hasanov, Philipp Gschwandtner, Pierre Lemarinier, Stefano Markidis, Herbert
Jordan, Thomas Fahringer, Kostas Katrinis, Erwin Laure, and Dimitrios S. Nikolopou-
los. A taxonomy of task-based parallel programming technologies for high-performance
computing. The Journal of Supercomputing, 74(4):1422-1434, Apr 2018.

Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling. Parallex: An advanced
parallel execution model for scaling-impaired applications. In Proceedings of the 2009
International Conference on Parallel Processing Workshops, ICPPW '09, pages 394—
401, Washington, DC, USA, 2009. IEEE Computer Society.

Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar
Fey. Hpx: A task based programming model in a global address space. In Proceedings
of the 8th International Conference on Partitioned Global Address Space Programming
Models, PGAS 14, pages 6:1-6:11, New York, NY, USA, 2014. ACM.

Vinay Chandra Amatya. Parallel processes in HPX: designing an infrastructure for
adaptive resource management. PhD thesis, Louisiana State University, 2014.

Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference, AFIPS ’67 (Spring), pages 483-485, New York, NY, USA, 1967. ACM.

M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer, 41(7):33—
38, July 2008.

John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532-533, May
1988.

Thomas Heller. Extending the C++ Asynchronous Programming Model with the HPX
Runtime System for Distributed Memory Computing. PhD thesis, Friedrich-Alexander-
Universitat Erlangen-Niirnberg (FAU), 2019.

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.
Active messages: A mechanism for integrated communication and computation.

SIGARCH Comput. Archit. News, 20(2):256-266, April 1992.

88

[14]

[15]

[16]

[17]

18]

[19]

20]

[21]

[22]

23]

[24]

[25]

Henry C. Baker, Jr. and Carl Hewitt. The incremental garbage collection of processes.
In Proceedings of the 1977 Symposium on Artificial Intelligence and Programming
Languages, pages 55-59, New York, NY, USA, 1977. ACM.

J. B. Dennis. First version of a data flow procedure language. In Programming Sympo-
stum, Proceedings Colloque Sur La Programmation, pages 362-376, Berlin, Heidelberg,
1974. Springer-Verlag.

Jack B. Dennis and David P. Misunas. A preliminary architecture for a basic data-flow
processor. In Proceedings of the 2Nd Annual Symposium on Computer Architecture,

ISCA ’75, pages 126-132, New York, NY, USA, 1975. ACM.

Kevin Huck, Allan Porterfield, Nick Chaimov, Hartmut Kaiser, Allen Malony, Thomas
Sterling, and Rob Fowler. An autonomic performance environment for exascale. Su-
percomputing Frontiers and Innovations, 2(3), 2015.

Jeremiah James Willcock, Torsten Hoefler, Nicholas Gerard Edmonds, and Andrew
Lumsdaine. Active pebbles: Parallel programming for data-driven applications. In
Proceedings of the International Conference on Supercomputing, ICS '11, pages 235—
244, New York, NY, USA, 2011. ACM.

Jeremiah James Willcock, Torsten Hoefler, Nicholas Gerard Edmonds, and Andrew
Lumsdaine. Am+-+: A generalized active message framework. In 2010 19th Inter-
national Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 401-410, Sept 2010.

Laxmikant V. Kale and Sanjeev Krishnan. Charm+-+: A portable concurrent object
oriented system based on c++. In Proceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and Applications, OOPSLA 93,
pages 91-108, New York, NY, USA, 1993. ACM.

B. Wagle, S. Kellar, A. Serio, and H. Kaiser. Methodology for adaptive active mes-
sage coalescing in task based runtime systems. In 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 1133-1140, May
2018.

S. X. Yang, H. Fotso, J. Liu, T. A. Maier, K. Tomko, E. F. D’Azevedo, R. T. Scalettar,
T. Pruschke, and M. Jarrell. Parquet approximation for the 4x4 Hubbard cluster.
80:046706, 2009.

Patricia A Grubel. Dynamic adaptation in HPX - A task-based parallel runtime system.
PhD thesis, New Mexico State University, 2016.

Ste|lar Group. Running HPX on ROSTAM. https://github.com/STE11AR-GROUP/hpx/
wiki/Running-HPX-on-Rostam, 2017.

L. Wesolowski, R. Venkataraman, A. Gupta, J. S. Yeom, K. Bisset, Y. Sun, P. Jetley,
T. R. Quinn, and L. V. Kale. Tram: Optimizing fine-grained communication with

89

https://github.com/STEllAR-GROUP/hpx/wiki/Running-HPX-on-Rostam
https://github.com/STEllAR-GROUP/hpx/wiki/Running-HPX-on-Rostam

[26]

[27]

28]

[29]

[30]

[31]

32]

3]

[34]

[35]

[36]

topological routing and aggregation of messages. In 2014 43rd International Confer-
ence on Parallel Processing, pages 211-220, Sept 2014.

Yanhua Sun, Jonathan Lifflander, and Laxmikant V. Kalé. Pics: A performance-
analysis-based introspective control system to steer parallel applications. In Pro-
ceedings of the 4th International Workshop on Runtime and Operating Systems for
Supercomputers, ROSS 14, pages 5:1-5:8, New York, NY, USA, 2014. ACM.

Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A
technique for increasing the granularity of parallel programs. In Proceedings of the
1990 ACM Conference on LISP and Functional Programming, LFP 90, pages 185—
197, New York, NY, USA, 1990. ACM.

R. Tohid, B. Wagle, S. Shirzad, P. Diehl, A. Serio, A. Kheirkhahan, P. Amini,
K. Williams, K. Isaacs, K. Huck, S. Brandt, and H. Kaiser. Asynchronous execution
of python code on task-based runtime systems. In 2018 IEEE/ACM jth International
Workshop on Ezxtreme Scale Programming Models and Middleware (ESPM2), pages
37-45, Nov 2018.

B. Wagle, M.A.H. Monil, K. Huck, A.D. Malony, A. Serio, and H. Kaiser. Runtime
adaptive task inlining on asynchronous multitasking runtime systems. In Proceedings
of the 48th International Conference on Parallel Processing, ICPP 2019, pages 76:1-
76:10, New York, NY, USA, 2019. ACM.

C Bishop. Pattern recognition and machine learning (information science and statis-
tics), 1st edn. 2006. corr. 2nd printing edn. Springer, New York, 2006.

Ste|lar Group. Phylanx - An Asynchronous Distributed C++ Array Processing
Toolkit. https://github.com/STE11AR-GROUP/phylanx/, 2018.

Olvi L Mangasarian and William H Wolberg. Cancer diagnosis via linear programming.
Technical report, University of Wisconsin-Madison Department of Computer Sciences,
1990.

Klaus Iglberger, Georg Hager, Jan Treibig, and Ulrich Riide. Expression templates
revisited: a performance analysis of current methodologies. STAM Journal on Scientific
Computing, 34(2):C42-C69, 2012.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feed-
back datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference
on, pages 263-272. Ieee, 2008.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4):19:1-19:19, December 2015.

JD McCalpin. Stream: Sustainable memory bandwidth in high performance computers
(2008), 1991-2007.

90

https://github.com/STEllAR-GROUP/phylanx/

[37]

38

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

OpenMP. The openmp api specification for parallel programming. Technical report,
2018.

B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the
chapel language. Int. J. High Perform. Comput. Appl., 21(3):291-312, August 2007.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. SIGPLAN Not., 40(10):519-538,
October 2005.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
SIGPLAN Not., 30(8):207-216, August 1995.

Chuck Pheatt. Intel® threading building blocks. J. Comput. Sci. Coll., 23(4):298—
298, April 2008.

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing
locality and independence with logical regions. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC
12, pages 66:1-66:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-t: A high-performance parallel
lisp. SIGPLAN Not., 24(7):81-90, June 1989.

Alejandro Duran, Julita CorbalCorbalan, and Eduard Ayguadé. Evaluation of openmp
task scheduling strategies. In Rudolf Eigenmann and Bronis R. de Supinski, edi-
tors, OpenMP in a New Era of Parallelism, pages 100-110, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

Alejandro Duran, Julita Corbalan, and Eduard Ayguadé. An adaptive cut-off for task
parallelism. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
SC 08, pages 36:1-36:11, Piscataway, NJ, USA, 2008. IEEE Press.

Jianmin Bi, Xiaofei Liao, Yu Zhang, Chencheng Ye, Hai Jin, and Laurence T. Yang. An
adaptive task granularity based scheduling for task-centric parallelism. In Proceedings
of the 2014 IEEE Intl Conf on High Performance Computing and Communications,
2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl
Conf on Embedded Software and Syst (HPCC,CSS,ICESS), HPCC ’14, pages 165—
172, Washington, DC, USA, 2014. IEEE Computer Society.

Peter Thoman, Herbert Jordan, and Thomas Fahringer. Adaptive granularity control
in task parallel programs using multiversioning. In Felix Wolf, Bernd Mohr, and Dieter
an Mey, editors, Euro-Par 2013 Parallel Processing, pages 164-177, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

91

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

S. Iwasaki and K. Taura. A static cut-off for task parallel programs. In 2016 In-
ternational Conference on Parallel Architecture and Compilation Techniques (PACT),
pages 139-150, Sep. 2016.

S. Iwasaki and K. Taura. Autotuning of a cut-off for task parallel programs. In 2016
IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-
Chip (MCSoC), pages 353-360, Los Alamitos, CA, USA, sep 2016. IEEE Computer
Society.

D. Akhmetova, G. Kestor, R. Gioiosa, S. Markidis, and E. Laure. On the application
task granularity and the interplay with the scheduling overhead in many-core shared

memory systems. In 2015 IEEFE International Conference on Cluster Computing, pages
428-437, Sep. 2015.

Yanhua Sun, Gengbin Zheng, Pritish Jetley, and Laxmikant V. Kalé. Parssse: an
adaptive parallel state space search engine. Parallel Processing Letters, 21(3):319-338,
2011.

Joshua Daniel Suetterlein. A case for asynchronous many task runtimes: a model-
g approach for high performance computing and Big Data analytics. PhD thesis,
University of Delaware, 2017.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun. ACM, 52(4):65-76,
April 2009.

Joshua Landwehr, Joshua Suetterlein, Andrés Marquez, Joseph Manzano, and
Guang R. Gao. Application characterization at scale: Lessons learned from devel-
oping a distributed open community runtime system for high performance computing.
In Proceedings of the ACM International Conference on Computing Frontiers, CF ’16,
pages 164-171, New York, NY, USA, 2016. ACM.

C. D. Pham. Comparison of message aggregation strategies for parallel simulations
on a high performance cluster. In Proceedings 8th International Symposium on Mod-
eling, Analysis and Simulation of Computer and Telecommunication Systems (Cat.
No.PR00728), pages 358365, 2000.

92

Vita

Bibek Wagle graduated with a Bachelors Degree in Engineering from Tribhuvan University,
Kathmandu, Nepal in 2008. He completed his Master of Science degree from Teesside
University, Middlesbrough, UK in 2011. He joined Louisiana State University for pursuing a
doctoral degree in Computer Science in 2013. During his time at Louisiana State University,
he worked with the STE||AR group and contributed to open source projects such as HPX

and Phylanx.

93

