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Abstract

Asynchronous Many-Task (AMT) runtime systems are based on the idea of dividing
an algorithm into small units of work, known as tasks. The runtime system is then respon-
sible for scheduling and executing these tasks in an efficient manner by taking into account
the resources provided to it and the associated data dependencies between the tasks. One
of the primary challenges faced by AMTs is managing such fine-grained parallelism and
the overheads associated with creating, scheduling and executing tasks. This work de-
velops methodologies for assessing and managing overheads associated with fine-grained
task execution in HPX, our exemplar Asynchronous Many-Task runtime system. Known
optimization techniques, viz. active message coalescing, task inlining and parallel loop it-
eration chunking are applied to HPX. Active message coalescing, where messages bound
to the same destination are aggregated into a single message, is presented as a solution
to minimize overheads associated with fine-grained communications. Methodologies and
metrics for analyzing fine-grained communication overheads are developed. The metrics
identified and implemented in this research aid in evaluating network efficiency by giving
us an intrinsic view of the underlying network overhead that would be difficult to measure
using conventional methods. Task inlining, a method that allows runtime systems to man-
age the overheads introduced by a large number of tasks by merging tasks together into
one thread of execution, is presented as a technique for minimizing fine-grained task over-
heads. A runtime policy that dynamically decides whether to inline a task is developed and
evaluated on different processor architectures. A methodology to derive a largely machine
independent constant that allows controlling task granularity is developed. Finally, the
machine independent constant derived in the context of task inlining is applied to chunk-
ing of parallel loop iterations, which confirms its applicability to reduce overheads, in the

context of finding the optimal chunk size of the combined loop iterations.
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Chapter 1. Introduction

The breakdown of Dennard scaling [1] and slowdown in Moore’s Law [2] has resulted in
a paradigm shift from the uni-processor era towards multi-core and many-core technolo-
gies. Following this shift in industry, today’s supercomputers rely on many-core machines
and hardware accelerators to achieve the FLOPS (Floating Point Operations Per Second)
advertised. Hardware accelerator options such as GPUs and Xeon Phis increase the core
count by orders of magnitudes. It is evident from the trends seen in table 1.1 that future
machines will continue to increase intra-node concurrency via the addition of cores and ac-
celerators. Keeping in line with the changes in the hardware, the focus of scientific software
development is changing from relying on an increase in the clock speed of newer processors
to exploiting parallelism from these new highly concurrent architectures.

Many modern HPC(High Performance Computing) applications use a hybrid program-
ming model where MPI 3] is responsible for inter-node operations whereas another thread-
ing library such as OpenMP [4] is responsible for intra-node parallelism. MPI, which is
an abbreviation for Message Passing Interface, is a widely used standard for distributed
information exchange. First released in 1994, MPI is an example of SPMD (single program
multiple data) parallelism where each node in the distributed architecture executes its own
copy of the application and communicates with other nodes via message passing. MPI ini-
tially only supported synchronous messages which was later extended to support for sending
asynchronous messages with the release of version 2 of the MPI standard. OpenMP, an
abbreviation for Open Multi-Processing, is a standard for shared memory multiprocessing.

OpenMP employs a fork-join method of parallelism where a master thread forks a number

Table 1.1. TOP500 by Year

Year 2005 2010 2015 2019
Machine BlueGene/L | Tianhe-1A | Tiahhe-2 | Summit
Number of Cores | 131,072 186,368 3,120,000 | 2,397,824
Number of Nodes | 65,536 7,168 16,000 4,356




of slave threads in order to perform parallel tasks, at the end of which the slave threads join
with the master thread. Since version 3 of OpenMP standard, support for asynchronous
tasks have been added to OpenMP. Furthermore, OpenMP 4 provided directives to offload
computation to accelerators. Scientific software development for HPC largely follows the
MPI+4X model where MPI is paired with some form of shared memory parallelism such as
OpenMP, C++ threads, Pthreads or even hardware accelerators such as GPUs.

Asynchronous Many-Task(AMT) runtime systems have been gaining popularity in re-
cent years as a possible solution towards effective utilization of available concurrency [5].
These runtime systems are founded on the idea of decomposing an algorithm into units of
work, known as tasks, and executing them asynchronously. The amount of work contained
in a task determines the granularity of the task. A task can be fine-grained containing only
a few instructions or coarse-grained containing many instructions. The granularity of tasks
plays a vital role in efficient utilization of hardware resources. Fine-grained tasks allow
the total computation to be distributed evenly among the processors which enables better
load balancing. In the event of an unforeseen delay in execution of a task, fine-grained
tasks are preferable as the amount of work available in the system is abundant so that the
resources can stay busy whereas a coarse-grained program experiencing the same delay will
not be able to keep all of its resources busy and therefore stall the program execution. Fine-
grained tasks also allow for flexibility in managing latencies. For example, a fine-grained
tasks can be scheduled during the time another task is waiting for a resource to be ready.
On the other hand, larger task granularity would not be able to effectively fill in the small
gaps in CPU utilization due to lack of tasks small enough to execute during such period.
Hence, fine-grained parallelism exposed by Asynchronous Many-Task runtimes enables ef-
fective load balancing and latency management that has the potential for better system
utilization [6-8].

The benefits of employing fine-grained tasks can be nullified by the overheads associ-

ated with the creation and management of these tasks. Each task has an overhead cost



associated with it that can add up to significant portion of the overall computation time.
Overheads are defined as excess work that needs to be carried out in order to perform
actual computation. Overheads can also be thought of as the cost of parallelization or the
cost that would not exist if the same application was run serially. The granularity of a
task is an important factor when talking about overheads of the task. For example, if the
granularity of the task is small, the overheads associated with the task may be comparable
to the amount of work performed by the task. In such a case, large portion of compu-
tational time is spend on overheads. Conversely, in the case of coarse-grained tasks, the
overheads may be a small fraction of the overall computation contained in the task. How-
ever, as the coarseness of the task increases, parallelism is negatively impacted. The key
to deal with the overheads is to amortize the cost of overheads with useful computation.
Therefore, the amount of work performed by a task should be large enough such than the
overheads of creating and managing the task itself does not account for significant amount
of computational time. Since a larger task may results in lower utilization whereas smaller
tasks may result in overheads accounting for significant amount of overall application time,
there needs to be a delicate balance between the granularity of the task and the amount of
parallelism in the system. In order to efficiently utilize today’s highly concurrent systems,
effective management of overhead costs of fine-grained tasks is the key.

Overheads in the case of Asynchronous Many-Task runtimes can be broadly classified
into two categories: those that pertain to creation and management of tasks that are
executed locally in the node where the task was created, and those that pertain to tasks
that are executed in a node different from the one where the task was created. In the
context of this work, we refer to the two categories of tasks as locally executed tasks and
remotely executed tasks. Overheads incurred by locally executed tasks arise from creation
and management of these tasks. In the context of remotely executed tasks, additional
overheads specific to remote execution must also be accounted for such as converting the

task into an active message, serialization, transporting to the destination, de-serialization



and recreation of the original task at the destination.

This work provides methodologies for assessing and managing overheads associated
with fine grained task execution in HPX, our exemplar asynchronous many task runtime
system. Known optimization techniques, viz. active message coalescing, task inlining and
parallel loop iteration chunking are applied to HPX. In the context of remotely executed
tasks, active message coalescing is presented as a means to improve application perfor-
mance. Methodologies and metrics for analyzing the overheads associated with transmis-
sion and reception of active messages in the context of HPX is developed. With regards
to locally executed tasks, task inlining, where a child task is executed by the parent, is ex-
plored. A dynamic policy that decide whether to inline a particular task based on profiling
information is also presented. Methodologies for determining a largely machine indepen-
dent constant , A, that allows controlling the granularity of tasks is also presented. \,,in
allows establishing the lower bound on the size of the task and denotes the point where the
effects of overheads have been amortized. Furthermore, chunking of parallel loop iterations
is applied in the context of HPX. Existing policy for automatically chunking parallel loops

in HPX is extended to use \,,;, derived in the context of task inlining.

1.1. Research Contributions
This dissertation makes the following contributions:
e Identifying metrics and runtime characteristics that relate to the overhead associated
with fine-grained communication in HPX.
e Designing a dynamic policy that makes task inlining decisions.
e Showing the impact of task inlining on different processor architectures.
e Providing a methodology to derive largely architecture independent constant A\,
that allows controlling task granularity.
e Providing a methodology for extending Autochunking policy in HPX to determine

the granularity of combined loops using A,,;, derived in the context of task inlining.



1.2. Publications

Parts of this dissertation contains previously published materials from IEEE and ACM
that appeared in the following publications which have been incorporated throughout the
dissertation. Permissions for reuse detailed in the Appendix.

e B. Wagle et al., "Methodology for Adaptive Active Message Coalescing in Task Based
Runtime Systems," 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), Vancouver, BC, 2018, pp. 1133-1140.

e B. Wagle et al., "Runtime Adaptive Task Inlining on Asynchronous Multitasking Run-
time Systems," 48th International Conference on Parallel Processing (ICPP 2019),

Kyoto, Japan, 2019.

1.3. Dissertation Outline

This rest of the dissertation is organized as follows: Chapter 2 presents additional back-
ground information along with an overview of HPX, the exemplar Asynchronous Many-Task
runtime system used in this dissertation. Chapter 3 presents details pertaining to active
message coalescing in HPX along with metrics and runtime characteristics related to re-
motely executed task. Chapter 4 presents design and implementation of dynamic policies
for task inlining followed chapter 5 where an automatic parallel loop chunking policy is pre-
sented. A survey of related work is presented in chapter 6 and finally chapter 7 concludes

the dissertation.



Chapter 2. Background

In an ideal strong scaling scenario, a parallel application would run twice as fast by doubling
the number of processors. However, Amdahl’s law |9, 10|, which states that scalability of
an application is limited by the serial portion of the code, imposes a theoretical upper limit
on the speedup a parallel application can achieve. Similarly, the concept of weak scaling is
introduced by Gustafson’s law [11] and states that as the problem size is increased, parallel
work increases accordingly. In an ideal weak scaling scenario an application would be able
to handle double the amount of work if the resources are doubled. However, ideal scaling
behaviors are not seen in practice and deviation from ideal can be broadly attributed to
the following factors as outlined in the ParalleX [6] model:

e Starvation or the lack of concurrent work available in the system to keep all of the

resources busy

e Latencies related to accessing services and resources

e Overheads of parallel execution which would not be present in sequential execution

e Waiting for contention resolution due to over-subscription of shared resources

All the above factors contribute to the compute resources being idle either due to lack
of work, delays in accessing services or waiting for a shared resource to be available. The
overheads of parallel execution where the runtime system performs work unrelated to the
actual computation to achieve parallel execution also adds additional delays. HPX [7], an
Asynchronous Many-Task runtime system used as an exemplar runtime system throughout
the dissertation, is the first implementation of the ParalleX model and attempts to allevi-
ate application scalability issues in order to extract maximum possible parallelism from the
system. HPX exposes a concurrency and parallelism API that is consistent with the ISO
C++ standard. HPX parallel applications can run on both a single machine as well as a
cluster with hundreds of thousands of nodes. A detailed description of HPX and its imple-
mentation details can be found in the following publications [6,7,12]. A gentle overview of

HPX useful to the comprehension of this dissertation is provided in the subsequent section.



2.1. HPX Runtime System

The design of HPX mainly revolves around using fine-grained tasks running on top of kernel
threads via a lightweight scheduler that supports work stealing, applying local constraint
based synchronization among tasks rather than global barriers, using active messages [13|
for executing tasks wherever data is located and a mechanism for addressing any object
globally. Fine-grained asynchronous tasks allows for better flexibility in keeping the under-
lying CPU busy while another task is waiting on a resource effectively hiding the latencies
associated with memory access, network etc. The use of local constraint based synchroniza-
tion instead of global barriers allows parts of the application where synchronization is not
needed to avoid waiting. The constraint on synchronization is placed locally, for example
based on data availability, which makes sure only those tasks that are waiting for some data
to be available are suspended. Unlike traditional message-passing scenarios, using active
messages in HPX allows tasks to be executed in the location of the data rather than moving
data to where the task is located avoiding data movement. Furthermore, each object in
HPX is assigned a Global Identifier(GID) that is maintained throughout the lifetime of the
object even if it is moved between nodes in the system.

The modular structure of HPX is shown in figure 2.1. HPX consists of a T hread Scheduler
responsible for scheduling lightweight tasks, a Per formance Counter framework used for
instrumentation purposes, a Parcel Transport Layer for handling message passing and re-
mote method invocations, lightweight Local Control Objects (LCOs) for synchronization
among tasks and an Active Global Address Space (AGAS) for addressing object across
nodes. The Per formance Counter framework is able to gather performance information
from the whole system which can be used for the purpose of debugging, post-mortem
analysis as well as for runtime adaptive purposes.

HPX exploits parallelism by executing lightweight tasks scheduled on top of the kernel
threads. By default, HPX creates one kernel thread per core. The HPX scheduler schedules

the lightweight tasks on top of these kernel threads. HPX tasks are non preemptive and
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Figure 2.1. The modular structure of HPX runtime system

are stopped either when they run to completion or voluntarily yield their execution. An
implication of the non-preemptive nature of HPX tasks is the fact that the tasks have to
be short-lived or voluntarily yield occasionally to allow for fair scheduling. A task in HPX
is also called HPX-Thread as it is a fully conferment implementation of the C++ standard
thread, has its own stack and support calls to yield , suspend and resume [12].

Asynchrony in HPX is managed via futures [7,14]. A future is a placeholder for the
result of some computation that is not yet ready. A task requesting the result of a future is
suspended if the result is unavailable. When the future becomes ready, wherein the results
of the computation is available, the suspended tasks are resumed. Another important
feature of HPX is the dataflow [15,16| utility. HPX makes use of dataflow objects for
managing data dependencies. A dataflow waits until a provided set of futures have become
ready before executing a predefined callable which relies on the results referenced by the
futures. Futures and dataflows are the prominent Local Control Objects in HPX among
others such as mutexes, spin-locks, barriers and semaphores.

Remote task invocation in HPX is performed via parcels. A parcel is a form of an active
message [13]. A parcel is created when a method, called action in HPX terminology, is called

remotely. A parcel has four components: the destination address which is the location



where the method is to be executed, action which is the method to execute, arguments are
the parameters of the method and continuations are optional objects that are executed
after the main method in the parcel terminates. In order to transmit a parcel over the
network, a parcel goes through a serialization process and is converted into a stream of
bytes which is then transmitted using existing network protocols. At the receiving end, a
de-serialization process reconstructs the parcel from the received sequence of bytes. The
parcel is then converted into a task and placed in the scheduler queue for execution. The
parcel layer is responsible for creating the parcels as well as converting a received parcel
into a task.

HPX provides a system wide support for gathering performance information, known
as the performance counter framework. This feature is used to extract information about
the state of the application and runtime and is useful for instrumentation and debug-
ging purposes. In addition, HPX and the performance counter framework integrate with
APEX(Autonomic Performance Environment for eXascale) [17], which provides additional
measurements and a policy engine that enables runtime adaptive capabilities. APEX is
an external library which gathers performance information from the runtime system. This
information can then be recorded for post-mortem analysis or used as inputs to the APEX
policy engine. APEX uses an event based introspection API where an event is triggered
either periodically or at a defined point in the application code. Users can define policies
which respond to these events based on the current state of an application.

This work assesses overheads associated with fine-grained task execution in HPX and
highlights methodologies to control the granularity of the tasks. In the subsequent section
we will look at how the granularity of tasks effects the performance of a parallel application

written in HPX.

2.2. Effects of Task Granularity in HPX
The granularity of the tasks can dictate the overall performance of an application. In this

section, we will look at how the performance a HPX parallel application varies when the
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Figure 2.2. Execution time relative to sequential execution for the stencil application in
HPX for various grainsize plotted using the blue line. All data points below 1.0 represent
faster execution compared to sequential execution. The red vertical line indicates the
grainsize that would be chosen if the total work was equally divided among the processing
units.

granularity of the task is varied. For this demonstration, we use the one dimensional heat
stencil! example in the HPX repository?. In the stencil example, the data points were
partitioned such that one HPX task is created for each partition. The grainsize or the
amount of work performed by each HPX task in the example can be controlled by varying
the data points per partition.

Figure 2.2 shows the execution time relative to sequential execution time for the stencil
example running on 16 cores with a total of 100000000 datapoints. The grainsize in fig-
ure 2.2 is controlled by controlling the data points per partition. For example, a grainsize

of 1000 represents 1000 data points per partition. Larger grainsizes indicate fewer tasks

Thttps://github.com/STEIIAR-GROUP /hpx/tree/master /examples/1d _stencil/1d _stencil
Zhttps://github.com/STEIAR-GROUP /hpx
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of longer duration were executed whereas smaller grainsize indicate more tasks of shorter
duration were executed.

It is seen from figure 2.2 that increasing the granularity of the task improves application
performance up until a certain point after which the improvement flattens. As the granu-
larity is further increased, the performance degrades. The portion of the graph towards the
left is dominated by overheads associated with parallel execution as the work contained in
the task is not able to amortize the cost of overheads. The portion of the graph towards
the right is dominated by starvation where not enough parallel work is available in the
system to keep all the processing units busy. It is also seen from figure 2.2 that the region
between the points where the cost of overheads is amortized and starvation kicks in, better
performance is seen with lower grainsize. The red vertical line in the figure indicates the
grainsize that would be chosen if the total work was equally divided among the processing
units as is done traditionally. However, this may not be the optimal grainsize as seen from
the stencil example. Increasing the granularity beyond a limit can result in degradation of
performance. In chapter 4 of the dissertation, with regards to locally executed tasks, we
will look at methodologies for estimating minimum granularity of HPX tasks in the context

of task inlining.
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Chapter 3. Active Message Coalescing

In this chapter, we explore overheads associated with tasks that are executed on a node
other than the one where it was created. As we move towards exascale computing, where
tens of thousands of nodes will work together in solving complex scientific problems, asyn-
chronous many-task runtime systems have carved out its own space alongside the de-facto
standard of High Performance computing, MPI [3]. The success of Asynchronous Many-
Task runtime systems is based on the fact that most algorithms can be decomposed into
fine grained units of work that can be executed by the runtime system. A side effect of
creating fine grained units of work in a large scale distributed application is fine-grained
inefficient communication patterns. If we are sending a large number of messages in quick
succession, the overheads associated with fine-grained tasks rapidly aggregates. In the
context of Asynchronous Many-Task runtime system, where fine grained communication is
ubiquitous, reduction of overheads introduced by the transmission of information is vital.
Any improvements that can be made in this context have the potential to improve the
overall execution time of the distributed application.

Coalescing messages allows users to combine small messages into large ones that effec-
tively send the same amount of data but keep the per message overheads at a minimum.
Although programmers can manually coalesce messages to optimize their applications, the
effort required to correctly achieve this is quite high and is practical only in small and sim-
ple applications. Recent work such as Active Pebbles [18] , AM++ [19] and Charm-++ [20],
have implemented some form of message coalescing solutions provided by runtime systems.
Such solutions are largely beneficial in terms of reducing program complexity and cod-
ing time. A programmer would simply enable message coalescing and the runtime would

intelligently coalesce messages bound to the same destination.

Parts of this chapter were previously published as B. Wagle, S. Kellar, A. Serio and H. Kaiser, "Methodology
for Adaptive Active Message Coalescing in Task Based Runtime Systems," 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), Vancouver, BC, 2018, pp. 1133-1140.
(©) 2018 IEEE. Reprinted with permission.
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In the rest of this chapter, we look at the implementation of message coalescing in HPX.
Furthermore,we look at methodology for estimating the overheads associated with fine-
grained communication in HPX. We devise metrics that relate to the overheads associated
with active messages in HPX. We use message coalescing as a technique to reduce active
message overheads in HPX and show that the metrics derived in this chapter are useful to
estimate the cost of overheads associated with sending and receiving large number of active
messages in HPX. The metrics and techniques defined in this chapter have the potential to
be used as a basis for the adaptive tuning of a broad set of messaging parameters. In the
following section, we look at the implementation details regarding active message coalescing

in HPX.

3.1. Parcel Coalescing in HPX

A parcel [21] is a form of active message in HPX as described in section 2.1. Individual
parcels are grouped together to form a larger coalesced message which is reconstructed into
the original entities at the receiving end. Figure 3.1 shows a diagrammatic representation
of parcel coalescing in HPX. Here, individual parcels are grouped together to form a larger
message containing the coalesced parcels. The coalesced message is then serialized and
sent to the destination. At the destination, individual parcels are reconstructed and placed
in the HPX scheduler queue. Implementation details and further information regarding
parcels and serialization in HPX can be found in [12].

One caveat of parcel coalescing is determining how many parcels to coalesce in a single
send. A coalesced parcel can be defined by either the size of the buffer, number of parcels,
a timeout or any combination of these criteria. The design of parcel coalescing in HPX
revolves around two parameters. First, the length of the parcel queue and second, the
wait time. The length of the parcel queue outlines a suggested number of parcels to be
coalesced before being sent. The wait time dictates the number of microseconds to wait
for the queue to be full before sending the current queue of parcels as one message. Hence,

coalesced parcels are sent either when the parcel queue is full or when the wait time expires.
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Figure 3.1. Diagrammatic representation of parcel coalescing

Additionally, a limit on the maximum size of the buffer is applied in order to avoid memory
overflow errors. The algorithm for parcel coalescing in HPX is shown in algorithm 1.

The accuracy of the wait timer responsible for signaling the send operation for the
parcels waiting in the queue is an important factor in the overall design of the parcel
coalescing module. The wait timer is designed using the deadline timer from the Boost!
library that allows the timing mechanism to run in its own dedicated hardware thread. It
is not desirable to implement the wait timer as a HPX task because HPX tasks are not
preemptive as discussed in section 2.1. This means that HPX tasks can only be stopped at
completion or through voluntary yielding. In a scenario where the HPX scheduler is busy
due to large number of tasks, the task responsible for wait timer may not be scheduled
immediately resulting in lower accuracy of the wait timer. In order to verify the accuracy
of the wait timer, an experiment was performed where a timer was created and set to
expire after certain interval. It was observed from the data obtained from the experiment
that the wait timer fires within on average of 33us of the desired fire time. This guarantees
that on an average, the wait temer in the HPX parcel coalescing plugin expires within 33us
of the desired wait time.

Another important design consideration when implementing parcel coalescing is when
to disable it. The communication pattern of a real life application may change through-

out its lifetime. The application may generate large number of parcels at certain points,

Thttps: //www.boost.org/
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Algorithm 1 Parcel coalescing policy

num_ parcels > number of parcels to coalesce in a message
interval > wait time in microseconds
parcel state > state of arriving parcel
time last parcel > time since last parcel

if time last parcel > interval then
SEND _PARCEL()

end if
switch parcel state do
case First:

TIMER.START (interval)
QUEUE _PARCEL()

case !First||Last:
QUEUE_ PARCEL()

case Last: > queue is full
TIMER.STOP()
SEND_PARCEL() > send queued parcels as one

whereas, there may be periods in the application where the number of parcels generated is
small. In the design of the parcel coalescing module in HPX, coalescing is performed only if
the time between parcel generation is less than the wait time. This feature effectively dis-
ables parcel coalescing in cases where parcel generation is sparse. It is important to disable
parcel coalescing in cases where parcel generation is sparse because the performance will be
negatively impacted when the application has to wait for the parcel queue to be flushed by
the wait timer. Furthermore, since parcel coalescing is beneficial in the specific case where
large number of parcels are generated, parcel coalescing is implemented in the form of a
plug-in rather than incorporating it into the core of HPX. This keeps HPX flexible by only
enabling parcel coalescing plug-in when needed. Also, parcel coalescing has been imple-
mented on per action basis and is effective only if explicitly enabled for a particular HPX ac-
tion. Parcel coalescing for a particular action can be enabled with minimal change to the ex-
isting code by adding the macro HPX ACTION USES MESSAGE COALESCING()
as seen in line 8 in listing 3.1.

During the course of this study, the following performance counters specific to parcel

coalescing were incorporated into HPX:
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e /coalescing/count/parcels that return the number of parcels associated with a partic-
ular action,
e /coalescing/count/messages that return the number of messages generated for a par-
ticular action,
e /coalescing/count/average-parcels-per-message that return the average number of
parcels sent in a message for a particular action,
e /coalescing/time/average-parcel-arrival that return the average time between arriving
parcels for a particular action,
e /coalescing/time/parcel-arrival-histogram that return a histogram representing the
gap between parcel arrival for a particular action.
Performance counters specific to coalescing provide intrinsic information about the applica-
tion that can be used for debugging and optimization purpose. The performance counters
listed above were used for preliminary analysis of parcel coalescing. The above counters

also aided in debugging our implementation of parcel coalescing.

3.2. Network Performance Metrics

This work develops metrics for measuring network overhead of an application. In the
context of this work, overhead is defined as the time spent processing information to be
communicated across the network. This processing time we call background work. While
informative, the time spent processing background work is insufficient to gauge the effects
network overhead on the application. An increase in time spent on background work may
only indicate a change in application state, eg. communication phase of an application.
To understand the influence of overhead, we must look at the ratio of background work to
overall execution time. The background work time paired with the overall execution time
of the application determines the actual influence of network overheads. The proportion of
time spent on overheads to the overall runtime indicates whether significant improvements
are possible via a reduction of network overheads.

Parcel coalescing is useful as it reduces the overhead cost per message. In an applica-
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tion that sends millions of messages during its execution, this reduction will be extremely
beneficial. After implementing parcel coalescing, we analyzed its effect on the overhead
associated with sending and receiving messages. We used two applications, Parquet [22]
and a toy application. Details about these applications are provided in section 3.3. Using
the Performance Counter Framework provided by HPX, we obtained intrinsic information
about the applications in real time. This section details the metrics we gathered to evaluate

the network overheads.

3.2.1. Execution Time

We first measured the execution time of our test applications while varying the number
of parcels to coalesce in a single message and the interval to wait before flushing the queued
parcels. The size of the problem in each run was kept constant, hence the same number of
parcels were generated in each run. The difference between runs was simply the number of

messages sent as determined by the coalescing parameters.

3.2.2. Task Duration
Next we looked at the overall time spent on executing each HPX-thread or tasks in-

cluding the overhead. We define task duration using the following equation:

ty = thw (3.1)
where Y t fune is the total time spent by the HPX scheduler executing each HPX-thread.

3.2.3. Task Overhead

We then looked at the average time spent on thread management for each HPX-thread
or tasks. All communication in HPX is done via tasks. Task overhead [23], is obtained
from the /threads/time/average-overhead performance counter. We calculate task overhead

using the following equation:

Z tfunc — Z tewec
t, = (3.2)

ny
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where ) tegec is the time spend by the HPX scheduler doing useful work and ) ¢y is the
task duration as defined in equation 3.1 and n; is the number of executed HPX threads.
We observed a positive correlation between task overhead and overall execution time of our

test applications for various coalescing parameters.

3.2.4. Background Work Duration

After establishing that task overhead has a positive correlation with the overall execu-
tion time, we separated the network related overhead from other overheads. HPX performs
network related tasks such as packaging a parcel into a message, serialization, handshaking
and locality resolution in the form of background work. We define total time spent doing
background work as the background work duration and it is obtained using the following
equation:

lpg = Z 2fbackgroundfwork (33>

Background work duration can be queried using the performance counter /threads/background-

work and was added to HPX as a part of this study.

3.2.5. Network Overhead

The network overhead, obtained from the performance counter /threads/background-
overhead, is the ratio of thread background work duration to task duration. HPX measures
> thackground-work, the running sum of time spent on performing network related duties of
each HPX-thread, and > g, the running sum of total time to complete each HPX-thread.

Network Overhead is shown in equation 3.4.

Z Zfbackgrounclfwor‘k
Non =
>t pune

(3.4)

Here, > thackground—work 1S the total time spent performing network related work and ) ¢ fune
is the total time to reach the completion of each HPX-thread. The network overhead

performance counter, /threads/background-overhead was added to HPX as a part of this
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