Parallelism 1in C++

Higher-level Parallelization in C++ for Asynchronous
Task-Based Programming

Hartmut Kaiser (hartmut.kaiser@gmail.com)

9/18/2015

State of the Art

- Modern architectures impose massive challenges on programmability
in the context of performance portability

- Massive increase in on-node parallelism
* Deep memory hierarchies

- Only portable parallelization solution for C++ programmers:
OpenMP and MPI

« Hugely successful for years
« Widely used and supported
- Simple use for simple use cases
* Very portable
- Highly optimized

~
()
w0
!
<
r
p=
=
=}
+
S~
+
+
o
=
s
(]
=}
n
!
—
)
—
—
<
~
<

@ STE||AR GROUP

G10¢/81/6 JOSTeY] INWIIRH ‘++)) UL WST[A[[BIe]

9/18/2015

Parallelism in C++

« C++11 introduced lower level abstractions
- std:‘thread, std::mutex, std::future, etec.
+ Fairly limited, more is needed
« C++ needs stronger support for higher-level parallelism

- Several proposals to the Standardization Commaittee are accepted or under
conslderation

- Technical Specification: Concurrency (note: misnomer)
+ Technical Specification: Parallelism
* Other smaller proposals: resumable functions, task regions, executors

- Currently there is no overarching vision related to higher-level parallelism
* Goal 1s to standardize a ‘big story by 2020

* No need for OpenMP, OpenACC, OpenCL, etc.
« This talk tries to show results of our take on this

o
()
w0

!
<

r

p=
=
=}

+
~
<

+
+

o
=

s
(]
=}
n

!

—
)

—

—
<
~
<

@ STE||AR GROUP

Concepts of Parallelism

9/18/2015

Parallel Execution Properties

The execution restrictions applicable for the work items
+ Restrictions imposed from thread-safety perspective
* 1.e. 'can be run concurrently', or 'has to be run sequentially’, etc.

In what sequence the work items have to be executed
* Sometimes we know what needs to go first

* 1.e. 'this work item depends on the availability of a result', 'no restrictions
apply', etc.

Where the work 1items should be executed

* 1.e. 'on this core', 'on that node', 'on this NUMA domain', or 'wherever this data
1tem 1s located', etc.

The parameters of the execution environment

* Controlling number of items directly or through execution time which should
run together on the same thread of execution

* 1.e. grain size control

o
()
w0

!
<

r

p=
=
=}

+
~
<

+
+

o
=

s
(]
=}
n

!

—
)

—

—
~

@ STE||AR GROUP

Concepts and Types of Parallelism

Application

Restrictions ~—

Sequence,

Where

Parallel Algorithms...

Fork-Join, etc....

C t . ..
oncepts Execution Policies

Executor
Executors...
| Parameters...
|

@ STE||AR GROUP

>
Futures, Async, Dataflow

_— Grainsize

9/18/2015

~
()
n
o=
Q
45
=
=
-
~
(o]
+
+
o
=
=
(=]
=
0
!
—
)
—
—
<
&
<
[l

9/18/2015

Execution Policies (std)

- Specify execution guarantees (in terms of thread-safety) for executed

parallel tasks:

* sequential execution policy: seq

- parallel execution policy: par

- parallel vector_execution policy: par_vec

Special rules related to exception handling

- In parallelism TS used for parallel algorithms only

o
()
w0

o
(av]

r

p=
=
=]

+
~
(o]

+
+

o
=

s
(]
=]
n

.

—
)

—

—
(V]
~
[y

@ STE||AR GROUP

9/18/2015

Execution Policies (Extensions)

- Extensions: asynchronous execution policies

- parallel task _execution policy (asynchronous version of
parallel execution_policy), generated with par(task)

- sequential task_execution_policy (asynchronous version of
sequential execution pollcy) generated with seq(task)

* In both cases the formerly synchronous functions return a future<>
 Instruct the parallel construct to be executed asynchronously
- Allows integration with asynchronous control flow

~
()
w0
!
<
r
p=
=
=}
+
S~
+
+
o
=
s
(]
=}
n
!
—
)
—
—
<
~
<

@ STE||AR GROUP

9/18/2015

Executors

- Executor are objects responsible for
- Creating execution agents on which work is performed (N4466)

« In N4466 this 1s limited to parallel algorithms, here much broader use
- Thus they

- Abstract the (potentially platform-specific) mechanisms for launching work

- Responsible for defining the Where and How of the execution of tasks

~
()
w0
o
(av]
r
p=
=
=]
+
~
(o]
+
+
o
=
s
(]
=]
n
.
—
)
—
—
(V]
~
[y

@ STE||AR GROUP

The simplest Executor possible

- Creating executors is trivial:

@ STE||AR GROUP

9/18/2015

|
- Parameters...

Execution Parameters

- Allows to control the grain size of work
- 1.e. amount of iterations of a parallel for_each run on the same thread

« Similar to OpenMP scheduling policies: static, guided, dynamic
* Much more fine control

~
()
w0
!
r
p=
=
=}
+
S~
+
+
o
=
s
(]
=}
n
!
—
)
—
—
<
~
<

@ STE||AR GROUP

The simplest Executor Parameters

- Creating executor parameter policies 1is trivial:

@ STE||AR GROUP

Rebind Execution Policies

- Execution policies have associated default executor and default executor
parameters
« par - parallel executor, static chunk size

« seq 2 sequential executor, no chunking

- Rebind executor and executor parameters:

@ STE||AR GROUP

9/18/2015

Stepping Aside

HPX — A General Purpose Runtime System for Applications of Any Scale

~
()
w0
!
<
r
p=
=
=}
+
S~
+
+
o
=
s
(]
=}
n
!
—
)
—
—
<
~
<

9/18/2015

HPX — A General Purpose Runtime
System

- Solidly based on a theoretical foundation — a well defined, new execution
model (ParalleX)

- Exposes a coherent and uniform, standards-oriented API for ease of
programming parallel and distributed applications.

- Enables to write fully asynchronous code using hundreds of millions of threads.
* Provides unified syntax and semantics for local and remote operations.

- HPX represents an innovative mixture of
- A global system-wide address space (AGAS - Active Global Address Space)
* Fine grain parallelism and lightweight synchronization
* Combined with implicit, work queue based, message driven computation
« Full semantic equivalence of local and remote execution, and

~
()
w0
!
<
r
p=
=
=}
+
~
<
+
+
o
=
s
(]
=}
n
!
—
)
—
—
~

- Explicit support for hardware accelerators (through percolation)

@ STE||AR GROUP

9/18/2015

HPX — A General Purpose Runtime
System

- Enables writing applications which out-perform and out-scale existing
ones
« A general purpose parallel C++ runtime system for applications of any scale

« http://stellar-group.org/libraries/hpx
- https://github.com/STEIAR-GROUP/hpx/

- Is published under Boost license and has an open, active, and thriving
developer community.

- Can be used as a platform for research and experimentation

o
()
w0

!
<

r

p=
=
=}

+
~
<

+
+

o
=

s
(]
=}
n

!

—
)

—

—
~

@ STE||AR GROUP

http://stellar-group.org/libraries/hpx
https://github.com/STEllAR-GROUP/hpx/

10
—
=
xQ
~
D
—i
S~~~
S

HPX — The API

- As close as possible to C++11/14 standard library, where appropriate, for instance

- std::thread hpx::thread

- std:'mutex hpx::mutex

- std::future hpx::future (including N4107, ‘Concurrency TS’)

- std::async hpx::async (including N3632)

* std:*bind hpx:bind a

* std::function hpx::function é

- std::‘tuple hpx::tuple Ei

- std::any hpx::any (N3508) ;

- std::cout hpx::cout &

- std::parallel::for_each, etc. hpx:parallel::for each (N4105, ‘Parallelism TS’) 2

- std::parallel::task_region hpx::parallel::task_region (N4088) EE
£

@ STE||AR GROUP

Application

Futures, Async, Dataflow

Task-based Parallelism

=
()
w0
!
r
p=
=
=}
+
S~
+
+
o
=
s
(]
=}
n
!
—
)
—
—
<
~
<

0
—
S
N
==
Q0
—
=
(o))

What is a (the) future

- A future 1s an object representing a result which has not been calculated yet

Locality 1
_ = Enables transparent synchronization

Future object Locality 2 with producer
Suspend S F T Execute
O T T —— Future: = Hides notion of dealing with threads :
thread (I -_— e
i producer = Makes asynchrony manageable 5
Execute / 3 b |- - th read é
another = Allows for composition of several =
. Result is being asynchronous operations S
esume returned 8
R » (Turns concurrency into parallelism) :
k

@ STE||AR GROUP

What is a (the) Future?

- Many ways to get hold of a future, simplest way is to use (std) async:

@ STE||AR GROUP

Compositional facilities

- Sequential composition of futures

@ STE||AR GROUP

Compositional facilities

- Parallel composition of futures

@ STE||AR GROUP

Dataflow — The New ‘async’ (HPX)

- What if one or more arguments to ‘async’ are futures themselves?

- Normal behavior: pass futures through to function

- Extended behavior: wait for futures to become ready before invoking the
function:

- If ArgN 1s a future, then the invocation of F will be delayed

- Non-future arguments are passed through

@ STE||AR GROUP

Application

Algorithms... Fork-Join, etc....

Executor
|_pevor [pumacn, [}

o}

Parallel Algorithms

allelism in C++, Hartmut K

Parallel Algorithms

adjacent difference

CoOpy

count if
fill n

find if
generate
inner product

iz partitioned
max element
mizmatch

partial sort
reduce

remove if
replace if
rotate_ copy

Zet _intersection
stable partition
uninitialized copy

unigue

adjacent find

copy if

equal

find

find if not
generate n

inplace merge

iz sorted

merge

mowve
partial sort copy
remove

replace

reverse

search

get symmetric difference
stable sort
uninitialized copy n

unigue copy

all of

copy n
exclusive scan
find end

for each
includes

iz _heap

iz sorted until
min element
none of
partition
remove copy
replace copy
reverse copy
search n

Zet union

swap ranges
uninitialized fill

any of

count

fill

find first of
for each n
inclusgive =Scan
iz _heap until

lexicographical compare

minmax element
nth element
partition copy
remove copy if
replace copy if
rotate
set_difference
Zart

transform

uninitialized_fill_n

@ STE||AR GROUP

&~
()
4]

o=
(v}

N4

=
=
=}
+~
&~
(v}
+

E

O
o

.-
-
e
)

o=

—
)

—

—
(o]
&
<

Parallel Algorithms

@ STE||AR GROUP

Parallel Algorithms

@ STE||AR GROUP

Extending Parallel Algorithms

S

==

@ STE||AR GROUP

Sean Parent: C++ Seasoning, Going Native 2013

9/18/2015

&~
()
4]

o=
(v}

N4

=
=
o

+~
&~
(v}
+

E

O
g

.-
-
e
)

o=

—
)

—

—
(o]
&
(2

Extending Parallel Algorithms

- New algorithm: gather

Sean Parent: C++ Seasoning, Going Native 2013

@ STE||AR GROUP

Extending Parallel Algorithms

- New algorithm: gather_async

@ STE||AR GROUP

Extending Parallel Algorithms (await)

- New algorithm: gather_async

@ STE||AR GROUP

Application

Parallel

Algorithms Fork-Join, et

Executor
oo] pumeen. [}

o}

>

Fork-join Parallelism

Parallelism in C++, Hartmut

Task blocks

- Canonic fork-join parallelism of independent and non-homogeneous code paths

@ STE||AR GROUP

JOSTRY] INWIRH ‘++)) UL WSI[A[[BIRJ

<
Q,
s
©
P
]
O
=

9/18/2015

STREAM Benchmark

- Assess memory bandwidth

. Series of parallel for loops, 3 arrays (a, b, c)
* copy step- Cc = a
* scalestep:b = k * ¢
- add two arrays:c = a + b
- triad step:a = b + k * ¢

- Best possible performance possible only if data is placed properly
- Data has to be located in memory of NUMA-domain where thread runs

- OpenMP: implicitly by using ‘first touch’, i.e. run initialization and
actual benchmark using same thread
- #pragma omp parallel for schedule(static)

~
()
w0
!
<
r
p=
=
=]
+
S~
(o]
+
+
o
=
s
(]
=]
n
!
—
)
—
—
<
~
<

@ STE||AR GROUP

STREAM Benchmark: HPX

@ STE||AR GROUP

STREAM Benchmark: HPX

@ STE||AR GROUP

10
—
=
xQ
~
D
—i
S~~~
oD

STREAM Benchmark: HPX vs. OpenMP

TRIAD STREAM Results

(50 million data points)

DO
o

—_
)

80
—] 0 |
70 —0— —@ ®
60 ——-HPX (1 NUMA Domain)
= —4—QOpenMP (1 NUMA Domain) .
A 50 —e-HPX (2 NUMA Domains)
% —#-OpenMP (2 NUMA Domains) *f
— 40 E
= —4= = 3 3
2 k
< 30]
g :
A =
s

1 2 3 4 5 6 7 8 9 10 11 12
Number of cores per NUMA Domain

@ STE||AR GROUP

Matrix Transposition

An extended Example

Matrix Transposition

B=A" = _

@ STE||AR GROUP

Matrix Transposition

@ STE||AR GROUP

Matrix Transposition

@ STE||AR GROUP

Matrix Transposition (distributed)

@ STE||AR GROUP

Matrix Transposition (distributed)

@ STE||AR GROUP

Matrix Transposition (distributed)

@ STE||AR GROUP

Matrix Transposition (distributed)

transpose

phase

Matrix Transposition (distributed)

@ STE||AR GROUP

Matrix Transposition (await)

@ STE||AR GROUP

9/18/2015

Matrix Transpose: HPX vs. OpenMP

Matrix Transpose (SMP, 24kx24k Matrices)

60

—4-HPX (1 NUMA Domain)

-=-HPX (2 NUMA Domains)
—-OMP (1 NUMA Domain)
— —

(o4
(@)

-o-OMP (2 NUMA Domains)

W
(e}

w
(@]

DO
-}

Data transfer rate [GB/s]
=

@)

1 2 3 4 5 6 7 8 9 10 11 12
Number of cores per NUMA domain

~
()
w0
!
(av]
r
=
=
=]
+
S~
(o]
+
+
(@)
=
s
(]
=]
n
!
—
)
—
—
<
~
<

@ STE||AR GROUP

Matrix Transpose: HPX vs. MPI (SMP)

@ STE||AR GROUP

60

—_ &) wo N [ox
o S S o =)

Data transfer rate [GB/s]

@)

Matrix Transpose (sMp, 24kx24k Matrices)

-=-HPX (2 NUMA Domains)

MPI (1 NUMA Domain, 12 ranks) /./.

—-o-MPI (2 NUMA Domains, 24 ranks)
—-MPI+OMP (2 NUMA Domains)

1 2 3 4 5 6 7 8 9 10 11 12

Number of cores per NUMA domain

9/18/2015

~
()
w0
!
(av]
r
=
=
=]
+
S~
(o]
+
+
(@)
=
s
(]
=]
n
!
—
)
—
—
<
~
<

9/18/2015

Matrix Transpose: HPX vs. OpenMP
(Xeon Phi)

Matrix Transpose (Xeon/Phi, 24kx24k matrices)

0 10 20 30 40 50 60
Number of cores

50
45 —e—HPX (4 PUs per core) —#—OMP (4 PUs per core)
—e—HPX (2 PUs per core) —&—OMP (2 PUs per core) /
40
—4—HPX (1 PUs per core) —®—OMP (1 PUs per core)
_ 3
) ’
SEN
= g
= 25 2
~ .
5 20 E
“g 15 =
< 2
510 1
. S
< {2
= = .
0 32
&
Ej

@ STE||AR GROUP

Real Application: Astrophysics,
Hydrodynamlcs coupled with Grav1ty

18 cells - real —+—
ic:l al ——
64 r 2021 cells - real —s—
ideal ——
2n24 cells-real —w—
16 ideal —— J
b= 2027 cells-real —»—
Q ideal
[4 4
T}
(=]]
ol
o
® 1 T
)
E '
|_
0.25 .
0.0625 -

16 64 256 1024 4096
Mumber of cores

@ STE||AR GROUP

9/18/2015

Conclusions

- Higher-level parallelization abstractions in C++:
- uniform, versatile, and generic

- Not only possible, but necessary
* Fork-join/loop-based parallelism: matching performance
- New algorithms are not easily implementable using existing abstractions

- HPX code was 1dentical for all benchmarks

- All of this is enabled by use of modern C++ facilities
- On top of versatile runtime system (fine-grain, task-based schedulers)

- Shows great promise for distributed use cases
- Parallel abstractions are not the cause for performance degradation

~
()
w0
!
<
r
p=
=
=}
+
~
<
+
+
o
=
s
(]
=}
n
!
—
)
—
—
~

* Insufficient quality of networking layer

@ STE||AR GROUP

CENTER FOR COMPUTATION
& TECHNOLOGY

9/18/2015

Parallelism in C++, Hartmut Kaiser

Ot
Ot

