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State of the Art

- Modern architectures impose massive challenges on programmability
in the context of performance portability

- Massive increase in on-node parallelism
* Deep memory hierarchies

- Only portable parallelization solution for C++ programmers:
OpenMP and MPI

« Hugely successful for years
« Widely used and supported
- Simple use for simple use cases
* Very portable
- Highly optimized
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Parallelism in C++

« C++11 introduced lower level abstractions
- std:‘thread, std::mutex, std::future, etec.
+ Fairly limited, more is needed
« C++ needs stronger support for higher-level parallelism

- Several proposals to the Standardization Commaittee are accepted or under
conslderation

- Technical Specification: Concurrency (note: misnomer)
+ Technical Specification: Parallelism
* Other smaller proposals: resumable functions, task regions, executors

- Currently there is no overarching vision related to higher-level parallelism
* Goal 1s to standardize a ‘big story by 2020

* No need for OpenMP, OpenACC, OpenCL, etc.
« This talk tries to show results of our take on this
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Concepts of Parallelism
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Parallel Execution Properties

The execution restrictions applicable for the work items
+ Restrictions imposed from thread-safety perspective
* 1.e. 'can be run concurrently', or 'has to be run sequentially’, etc.

In what sequence the work items have to be executed
* Sometimes we know what needs to go first

* 1.e. 'this work item depends on the availability of a result', 'no restrictions
apply', etc.

Where the work 1items should be executed

* 1.e. 'on this core', 'on that node', 'on this NUMA domain', or 'wherever this data
1tem 1s located', etc.

The parameters of the execution environment

* Controlling number of items directly or through execution time which should
run together on the same thread of execution

* 1.e. grain size control
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Concepts and Types of Parallelism

Application

Restrictions ~—

Sequence,

Where

Parallel Algorithms...

Fork-Join, etc....

C t . ..
oncepts Execution Policies

Executor
Executors...
| Parameters...
|
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Execution Policies (std)

- Specify execution guarantees (in terms of thread-safety) for executed

parallel tasks:

* sequential execution policy: seq

- parallel execution policy: par

- parallel vector_execution policy: par_vec

Special rules related to exception handling

- In parallelism TS used for parallel algorithms only
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Execution Policies (Extensions)

- Extensions: asynchronous execution policies

- parallel task _execution policy (asynchronous version of
parallel execution_policy), generated with par(task)

- sequential task_execution_policy (asynchronous version of
sequential execution pollcy) generated with seq(task)

* In both cases the formerly synchronous functions return a future<>
 Instruct the parallel construct to be executed asynchronously
- Allows integration with asynchronous control flow
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Executors

- Executor are objects responsible for
- Creating execution agents on which work is performed (N4466)

« In N4466 this 1s limited to parallel algorithms, here much broader use
- Thus they

- Abstract the (potentially platform-specific) mechanisms for launching work

- Responsible for defining the Where and How of the execution of tasks
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The simplest Executor possible

- Creating executors is trivial:
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|
- Parameters...

Execution Parameters

- Allows to control the grain size of work
- 1.e. amount of iterations of a parallel for_each run on the same thread

« Similar to OpenMP scheduling policies: static, guided, dynamic
* Much more fine control
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The simplest Executor Parameters

- Creating executor parameter policies 1is trivial:
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Rebind Execution Policies

- Execution policies have associated default executor and default executor
parameters
« par - parallel executor, static chunk size

« seq 2 sequential executor, no chunking

- Rebind executor and executor parameters:
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Stepping Aside

HPX — A General Purpose Runtime System for Applications of Any Scale
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HPX — A General Purpose Runtime
System

- Solidly based on a theoretical foundation — a well defined, new execution
model (ParalleX)

- Exposes a coherent and uniform, standards-oriented API for ease of
programming parallel and distributed applications.

- Enables to write fully asynchronous code using hundreds of millions of threads.
* Provides unified syntax and semantics for local and remote operations.

- HPX represents an innovative mixture of
- A global system-wide address space (AGAS - Active Global Address Space)
* Fine grain parallelism and lightweight synchronization
* Combined with implicit, work queue based, message driven computation
« Full semantic equivalence of local and remote execution, and
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HPX — A General Purpose Runtime
System

- Enables writing applications which out-perform and out-scale existing
ones
« A general purpose parallel C++ runtime system for applications of any scale

« http://stellar-group.org/libraries/hpx
- https://github.com/STEIAR-GROUP/hpx/

- Is published under Boost license and has an open, active, and thriving
developer community.

- Can be used as a platform for research and experimentation
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HPX — The API

- As close as possible to C++11/14 standard library, where appropriate, for instance

- std::thread hpx::thread

- std:'mutex hpx::mutex

- std::future hpx::future (including N4107, ‘Concurrency TS’)

- std::async hpx::async (including N3632)

* std:*bind hpx:bind a

* std::function hpx::function é

- std::‘tuple hpx::tuple Ei

- std::any hpx::any (N3508) ;

- std::cout hpx::cout &

- std::parallel::for_each, etc. hpx:parallel::for each (N4105, ‘Parallelism TS’) 2

- std::parallel::task_region hpx::parallel::task_region (N4088) EE
£
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Application

Futures, Async, Dataflow

Task-based Parallelism
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What is a (the) future

- A future 1s an object representing a result which has not been calculated yet

Locality 1
_ = Enables transparent synchronization

Future object Locality 2 with producer
Suspend S F T Execute . . . . .
O T T —— Future: = Hides notion of dealing with threads :
thread (I -_— e
i producer = Makes asynchrony manageable 5
Execute / 3 b |- - th read é
another = Allows for composition of several =
. Result is being asynchronous operations S
esume returned 8
R » (Turns concurrency into parallelism) :
k
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What is a (the) Future?

- Many ways to get hold of a future, simplest way is to use (std) async:
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Compositional facilities

- Sequential composition of futures
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Compositional facilities

- Parallel composition of futures
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Dataflow — The New ‘async’ (HPX)

- What if one or more arguments to ‘async’ are futures themselves?

- Normal behavior: pass futures through to function

- Extended behavior: wait for futures to become ready before invoking the
function:

- If ArgN 1s a future, then the invocation of F will be delayed

- Non-future arguments are passed through
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Application

Algorithms... Fork-Join, etc....

Executor
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Parallel Algorithms
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Parallel Algorithms
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Parallel Algorithms
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Extending Parallel Algorithms
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Sean Parent: C++ Seasoning, Going Native 2013
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Extending Parallel Algorithms

- New algorithm: gather

Sean Parent: C++ Seasoning, Going Native 2013
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Extending Parallel Algorithms

- New algorithm: gather_async
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Extending Parallel Algorithms (await)

- New algorithm: gather_async
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Application

Parallel

Algorithms Fork-Join, et

Executor
oo ] pumeen. [}

o}

>

Fork-join Parallelism

Parallelism in C++, Hartmut




Task blocks

- Canonic fork-join parallelism of independent and non-homogeneous code paths
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STREAM Benchmark

- Assess memory bandwidth

. Series of parallel for loops, 3 arrays (a, b, c)
* copy step- Cc = a
* scalestep:b = k * ¢
- add two arrays:c = a + b
- triad step:a = b + k * ¢

- Best possible performance possible only if data is placed properly
- Data has to be located in memory of NUMA-domain where thread runs

- OpenMP: implicitly by using ‘first touch’, i.e. run initialization and
actual benchmark using same thread
- #pragma omp parallel for schedule(static)
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STREAM Benchmark: HPX
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STREAM Benchmark: HPX
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STREAM Benchmark: HPX vs. OpenMP

TRIAD STREAM Results

(50 million data points)
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Matrix Transposition

An extended Example




Matrix Transposition

B=A" = _
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Matrix Transposition
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Matrix Transposition
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Matrix Transposition (distributed)
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Matrix Transposition (distributed)
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Matrix Transposition (distributed)
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Matrix Transposition (distributed)

transpose

phase




Matrix Transposition (distributed)
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Matrix Transposition (await)
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Matrix Transpose: HPX vs. OpenMP

Matrix Transpose (SMP, 24kx24k Matrices)
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Matrix Transpose: HPX vs. MPI (SMP)
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Matrix Transpose: HPX vs. OpenMP
(Xeon Phi)

Matrix Transpose (Xeon/Phi, 24kx24k matrices)
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Real Application: Astrophysics,
Hydrodynamlcs coupled with Grav1ty
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Conclusions

- Higher-level parallelization abstractions in C++:
- uniform, versatile, and generic

- Not only possible, but necessary
* Fork-join/loop-based parallelism: matching performance
- New algorithms are not easily implementable using existing abstractions

- HPX code was 1dentical for all benchmarks

- All of this is enabled by use of modern C++ facilities
- On top of versatile runtime system (fine-grain, task-based schedulers)

- Shows great promise for distributed use cases
- Parallel abstractions are not the cause for performance degradation
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* Insufficient quality of networking layer
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