A Project Report

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Master of Science in Computer Science

in

The Department of Computer Science and Engineering

by

Weile Wei

May 2020
Acknowledgments

I would like to take this opportunity to thank my committee members: Dr. Hartmut Kaiser, Dr. Golden G. Richard III, Dr. Bijaya B. Karki. Especially, heartfelt gratitude goes to my advisor Dr. Hartmut Kaiser, who has been an invaluable and patient mentor throughout my journey of Master in Computer Science at LSU. During the past two years, Dr. Kaiser helped me learn C++ programming, guided me through the high-performance computing field, and allowed me explore the world.

It is a pleasure also to thank my collaborators Arghya “Ronnie” Chatterjee (ORNL), Oscar Hernandez (ORNL), Thomas Maier (ORNL), Ed D’Azevedo (ORNL), Peter Doak (ORNL), John Biddiscombe (CSCS), Giovanni Balduzzi (ETH Zurich), and Ying Wai Li (LANL) for their thoughtful research suggestions on this project. I would like to express my sincerest gratitude to Ronnie for his timely and invaluable support throughout my ASTRO intern program at ORNL.

I would like to thank my colleagues and friends at STE||AR group, Adrian, Ali, Bibek, Bita, Katie, Max, Nanmiao, Parsa, Patrick, Rod, Shahrzad, Steve and Tianyi for their constructive discussions, invaluable suggestions, and necessary distractions. I would like to thank Center for Computation and Technology at LSU for its amazing facilities.

Last but not the least, I would like to give my heartfelt gratitude to my parents and my family members for their patience and warm supports for my study in the U.S. They always believe in me and encourage me whenever I face difficulties so I can be fearless to overcome any challenges. They let me know that they have my back. I would like to take this opportunity to express my love and say thanks to my family in my mother tongue: 谢谢家人的支持，我爱你们！
Table of Contents

Acknowledgements ... ii
List of Tables .. iv
List of Figures ... v
List of Listings .. vi
Abstract .. vii

Chapter

1. Introduction ... 1

2. HPX Threading Abstraction ... 5
 2.1. HPX Runtime System and its Facilities 5
 2.2. HPX Threading Implementation in DCA++ 9
 2.3. Experiment and Results .. 10

3. GPUDirect .. 14
 3.1. Memory Bound Issue and Solution 14
 3.2. GPUDirect on Summit .. 15
 3.3. MPI Ping-pong Benchmark ... 16
 3.4. Bandwidth Measurement on NVLink on Summit 22
 3.5. Pipeline Ring Algorithm ... 25

4. Conclusion and Future Work ... 29

References .. 30

Vita ... 32
List of Tables

3.1. Compare NVLink bandwidth speedup on Summit 23
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>DCA++ workflow</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>DCA++ Quantum Monte Carlo Solver</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>user-level light-weight HPX thread and kernel thread</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>What is a future?</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>New threading abstraction layer in DCA++</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Difference between custom-made threadpool and HPX threading abstraction in DCA++</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Compare the computation accuracy of HPX-enabled DCA++ and original DCA++</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>Compare DCA++ execution time between custom-made threadpool and hpx threadpool (threads=7)</td>
<td>12</td>
</tr>
<tr>
<td>2.7</td>
<td>Compare DCA++ execution time among different number of HPX threads</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Roofline plot of a NVIDIA V100 GPU running DCA++ at production level on Summit. Figure adapted from [1]</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>Memory bound issue with G4 matrix</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>GPU data transfer between GPUs using traditional MPI GPU to Remote GPU method</td>
<td>16</td>
</tr>
<tr>
<td>3.4</td>
<td>GPU data transfer between GPUs using GPUDirect</td>
<td>18</td>
</tr>
<tr>
<td>3.5</td>
<td>On-node bandwidth comparisons: DCA++ mini-application using NVLink and Up-and-down method</td>
<td>20</td>
</tr>
<tr>
<td>3.6</td>
<td>Distributed G4 with NVLink enabled</td>
<td>22</td>
</tr>
<tr>
<td>3.7</td>
<td>Compare bandwidth of data transfer on Summit using NVLink</td>
<td>23</td>
</tr>
<tr>
<td>3.8</td>
<td>Two nodes are located in two different sides of the facility room</td>
<td>24</td>
</tr>
<tr>
<td>3.9</td>
<td>Two nodes are located close to each other in the facility room</td>
<td>24</td>
</tr>
</tbody>
</table>
Listings

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>MPI GPU to Remote GPU</td>
<td>16</td>
</tr>
<tr>
<td>3.2.</td>
<td>GPUDirect peer to peer</td>
<td>18</td>
</tr>
<tr>
<td>3.3.</td>
<td>pipeline ring algorithm</td>
<td>26</td>
</tr>
</tbody>
</table>
Abstract

DCA++ is a high-performance research software framework providing modern C++ implementation to solve quantum many-body problems. Currently, DCA++ is facing two challenges: 1) DCA++ needs to prepare portability layer for Frontier, the next-generation exascale supercomputer at Oak Ridge National Lab and 2) DCA++ kernel computation is memory-bound on Summit Supercomputer’s NVIDIA V100’s.

High-Performance ParalleX (HPX), which is a C++ runtime-support system for parallel computation and has been ported to many operating systems, is a good candidate for the portability layer for DCA++. We have built a threading abstraction layer that can choose DCA++’s threading dependency between the custom-made thread pool in DCA++ and HPX light-weight thread pool by passing the threading compilation flag such that chosen thread-pool is used for the whole source-code in DCA++. We compared the runtime performance of the two thread-pools and our experimental runs show HPX-enabled DCA++ is slightly faster than the original DCA++ on supercomputer Summit.

To address the second challenge, we explored GPUDirect communication technique using NVIDIA’s NVLink interconnect (a high bandwidth low latency switched fabric interconnect method) on Summit. We designed a mini-app for comparing the NVLink approach and regular communication method and have observed up to 17x speedup using NVLink approach on the min-app on Summit. We further analyzed NVLink bandwidth in different scenarios on Summit using different hardware resources (i.e. NVLink across nodes and racks). This NVLink approach enabled us to drastically reduce memory usage in DCA++ by distributing arrays across nodes.

We plan to apply GPUDirect high bandwidth technique into DCA++ code to address the memory bound issue. Also, we plan to integrate GPUDirect into HPX so we can construct task dependency and attach more task continuations by overlapping network communication and computation to fully utilize hardware resources and improve code performance.
Chapter 1. Introduction

Legacy scientific applications must be ported to large scale and highly heterogeneous HPC systems. Portability and scalability of such applications are paramount to the design and implementation [2, 3]. In this project, we present the new strategies opted to enable high-level parallel abstraction to a legacy-condensed matter physics application using High-performance ParalleX and GPUDirect to exploit the application’s portability and scalability.

Developed by Oak Ridge National Lab, Swiss National Supercomputing Centre (CSCS), and ETH Zurich, DCA++ (Dynamical Cluster Approximation) [4, 5] is a high-performance research software framework, providing modern C++ implementation to solve quantum many-body problems. It’s a numerical simulation tool developed to understand the behaviors (such as superconductivity, magnetism, etc.) of co-related quantum materials. DCA++ has been successfully ported to the world’s largest supercomputers, e.g. Titan (Oak Ridge Leadership Computing Facility), Summit (OLCF) & Piz Daint (CSCS) sustaining many petaflops of performance. Recent work shows [1] a perfect strong and weak scaling for the Quantum Monte Carlo solver in DCA++ on Summit at 4600 nodes at 73.5 PFLOPS (mixed precision), but our solver computation is at memory bound on the NVIDIA V100’s.

Figure 1.1 shows the primary workflow in DCA++. It takes the initial Green’s function & Markov Chain as input parameters. After several iterative computations, DCA++ will converge and output a two-particle Green’s function (G4 array). The iteration process involves two critical computation-intensive steps, including coarse-graining and Quantum Monte Carlo solver (QMC Solver). QMC solver is the most computation intensive step in DCA++ and hence is our focus to optimize its performance.
The details of QMC solver is shown in Figure 1.2. DCA++ application starts in multiple MPI ranks. Each MPI rank is first performing its independent computation and communicates with each other at the end through calling mpi_all_reduce routine. During the independent computation stage, a custom-made thread-pool is used to run tasks in parallel (i.e. walker, accumulator).

With regard to the increasing heterogeneity of modern computing machines due to
energy constraints and changes to chips and memory architecture, porting scientific software to new hardware and architectures has become a grand challenge. This requires advanced programming techniques in software development and design. Ensuring long term platform stability and portability is very important for scientific codes.

HPX [6], a C++ Standard Library for Parallelism and Concurrency, provides an innovative implementation of C++ runtime system architecture with high-level parallelization abstractions. In this project, we have built a light-weight user threading model provided by HPX to DCA++, porting the current application to asynchronous task-based execution model. Our current result shows that HPX-enabled DCA++ produces comparable accuracy to the originally implemented custom-made thread pool in DCA++ and has slightly faster runtime performance.

In the project, we also attempt to address the memory bound challenges in DCA++ [1] and discuss our DCA++ lite benchmark (mini-application expressing the expensive computational motif with a relatively higher memory usage in V100 GPU) on comparing GPUDirect communication technique (a high-bandwidth, low-latency switched fabric interconnect method), and regular communication technique. We have observed 17x bandwidth speedup using GPUDirect for the benchmark application on the Summit supercomputer. This newly added GPUDirect approach proved the feasibility of constructing another high-level parallel abstraction layer in DCA++ that can take advantage of GPUDirect. This could enable us to easily switch from original network communication pattern in DCA++ to this new approach. More importantly, the GPUDirect approach will drastically reduce memory usage in DCA++ by distributing arrays across nodes, and therefore, we could utilize more kernel memory to conduct more scientific measurements. With the scalability support provided by GPUDirect approach, one can explore more scientific computation in DCA++ to study high-temperature superconductivity in material science.

In this report, chapter 2 introduces HPX and analyzes the performance of HPX threading mechanism in DCA++; chapter 3 presents the bandwidth evaluations of GPUDirect
techniques under varies hardware configuration on Summit; lastly, chapter 4 summaries this research project and provides an outlook of our future work.
Chapter 2. HPX Threading Abstraction

2.1. HPX Runtime System and its Facilities

HPX (High Performance ParalleX) is a fully Asynchronous Many Task (AMT) runtime system extending the C++ programming language. HPX runtime system is implemented on lightweight user-level tasks manager running on top of kernel threads. HPX is the first implementation of the ParaleX execution model [7], which essentially solves critical challenges that prevent effective usage of new HPC systems: Starvation, Latency, Overheads, and Waiting for Contention.

HPX programming model exposes a C++ standard API entirely conforming to interfaces as defined by C++11/C++14/C++17 and extended the C++ standard to distributed and heterogeneous computing scenarios, which makes HPX easy to use and very portable. HPX aligns itself with the ongoing C++ standardization proposals with a goal of providing a uniform interface, in particular, related to parallelism and concurrency. This project presents our input of various language features into proposals to current C++ standardization process. It is critical that we provide this user feedback to C++ standards committee so that the future language standard will natively support HPC use cases and eventually benefit our HPC community.

2.1.1. HPX Light-weight thread

The HPX light-weight threading system provides user-level threads, which enables fast context switching [8]. Smaller overheads allow the program to be broken up into smaller tasks, which in turns helps the runtime system to dynamically schedule these smaller tasks into physical processing units whenever the units have free resources therefore fully utilizing all processing units. With lower overheads (less time spent on creating, scheduling, executing and destroying threads) per thread, programs are able to create and schedule a large number of tasks with little penalty.

In the context of multitasking, the word "context switch" refers to the process of storing
the state for one process, so that it can be paused (and reloaded when required) and another process resumed. The process of context switching can have a negative impact on system performance [9]. Switching from one process to another requires a certain amount of time – changes of registers, program counter, stack, etc.

The idea behind light-weight thread is to switch one task to another as quickly as possible. This lightweight thread approach enables the operating system to take a thread and match it to one or more lightweight threads. Lightweight threads are thousands of times faster than kernel level threads (creating, scheduling, destroying, etc.). Figure 2.1 shows the relation between user-level light-weight HPX thread, and kernel thread. In user-level space, HPX has its own thread scheduler to manage light-weight threads, and this scheduler can smartly assign its threads to kernel threads when appropriate by using scheduling algorithms [10].

![Diagram of user-level light-weight HPX thread and kernel thread](image)

Figure 2.1. user-level light-weight HPX thread and kernel thread

The advantage of HPX lightweight threading system combined with the future func-
tionality in HPX facilitates auto-parallelization in a highly efficient fashion as such combination allows the direct expression of the generated dependency graph as an execution tree generated at runtime.

2.1.2. Future

A future is an object representing a result which has not been computed yet. The future [11–13] enables a transparent synchronization between the producer and its consumer; hides the notion of directly dealing with threads; makes asynchrony manageable as a future represents a data dependency; allows coordination of asynchronous execution of several tasks; supports and encourages a programming style which favors parallelism over concurrency.

Figure 2.2 shows the future object in the perspective of consumer-producer relationship. In consumer thread, a future object is created by calling async function and is dispatched to a producer thread to be computed. Calling get() function on a future object is a way to communicate and synchronize consumer and producer. By calling get(), two possible results can happen: 1) if the computation is finished, then program will handle results back to function caller; 2) if the computation is ongoing, the program will put the current thread to sleep and let current threads wait until computation has finished.
One of main differences between using std::future and hpx::future is that hpx::future is running in HPX lightweight thread while std::future is running in kernel thread. If calling get() on an hpx::future object and this object has not finished its computation, then the current lightweight thread will be put on sleep; meanwhile, the underlying kernel threads can still schedule other tasks if there are any. However, in the same situation for std::future will block kernel thread and leave physical core to be idle. Therefore, HPX light-weight thread combined with the future functionality can achieve lower overhead and better hardware utilization. This also means that with the help of HPX threading scheduler, we can easily oversubscribe thousands of millions of tasks to keep the hardware busy if needed.

2.1.3. Task continuation in HPX

Apart from HPX lightweight thread and hpx::future we introduced above, HPX has other facilities that can’t be performed using C++ standard library to support task-based programming, such as then (a method of hpx::future<T>), hpx::dataflow, etc.
In asynchronous many-task programming, it is common for one asynchronous operation, once completed, to invoke a second function along with data [11]. For example, the current C++ standard does not allow connecting such continuation to a `future`. With `hpx::future`, instead of waiting for the returning result, a continuation can be “attached” to the asynchronous operation, which is invoked when the result is returned. Then function will help to avoid blocking waits (i.e. `.get()`) or wasting threads on polling, greatly improving the responsiveness of a program. Even more conveniently, one can create a chaining futures if needed by attaching `hpx::future` after `hpx::future`. By creating continuation to a single `hpx::future`, an implicit dependency graph is therefore constructed.

2.2. HPX Threading Implementation in DCA++

![Figure 2.3. New threading abstraction layer in DCA++](image)

Figure 2.3 shows new threading abstraction layer that can choose DCA++’s threading pool between the custom-made thread pool in DCA++ and HPX light-weight thread pool by a user’s compilation flag such that chosen thread-pool is used for the whole source-code in DCA++.

Figure 2.4 shows the code that how HPX threading abstraction layer replaces custom-made thread pool. First, instead of creating a vector of `std::future<void>` objects, we create
a vector of future_type<void> objects to represent a list of to-be-compute tasks. Then, instead of creating a static thread-pool in custom-made thread-pool approach, we skip this stage because HPX has its own thread-pool manager underneath and therefore does not need to again create a thread-pool. When launching tasks, original DCA++ inserts each task into the custom-made thread-pool; in HPX version, we use hpx::async to launch tasks.

At the end, original DCA++ calls get() method on each task to join the result of all given futures, while HPX version just calls hpx::wait_all() to join all the results.

Figure 2.4. Difference between custom-made threadpool and HPX threading abstraction in DCA++

2.3. Experiment and Results

Figure 2.5 shows the temperature dependence of the leading eigenvalue λ_d of the Bethe-Salpeter equation. T_c is the temperature where $\lambda_d(T=T_c) = 1$. Both HPX threads and C++ std thread implementation follow same trendline thereby showing comparable accuracy in DCA++.
Figure 2.5. Compare the computation accuracy of HPX-enabled DCA++ and original DCA++

We measure the DCA++ run-time for custom-made thread-pool and HPX thread-pool for 5 times, respectively. Figure 2.6 shows that HPX-enabled DCA++ runs 3.6s faster than the custom-made thread-pool version. This means that HPX-enabled DCA++ is just slightly 1% faster than the custom-made thread-pool version in DCA++ and we consider this 1% speedup is inside the error margin.

The reason for this can be explained by DCA++’s threading configuration both from Summit hardware perspective and context switch perspective. Further explanation about the Summit hardware configuration can be found in the next paragraph and Figure 2.7. Here we analyze the context switch part. DCA++ originally does not use many threads (7 threads) to parallelize tasks, and basically no kernel context switch happens in the code. When we switch the threading mechanism to HPX light-weight thread-pool, we have not changed any underlying tasks ordering or code structure. So far, we simply replace standard threads to HPX light-weight user-level threading, the benefit of faster context
switch among HPX threads does not gain us much speedup. In the future, we plan to have finer size of computation tasks and oversubscribe tasks than the core capability in HPX-enabled DCA++ version, from there we will see more speedup and performance gain.

Figure 2.6. Compare DCA++ execution time between custom-made threadpool and hpx threadpool

![Compare DCA++ execution time between custom-made threadpool and hpx threadpool](image)

We compare the DCA++ run-time among different number of HPX threads shown in Figure 2.7. The optimal run-time is obtained when number of HPX threads is set to 7. Similar behaviors are also found in DCA++ that 7 threads provides the optimal run-time results. This result is largely due to the fact that the design of DCA++ software is tightly customized to Summit hardware resources. On each compute node of Summit, DCA++ runs 6 MPI ranks and each rank has 1 GPU and 7 CPU cores. This method is an even division of 42 CPU cores on a node, as well as an optimal solution to utilize GPU resource on a node when no communication between GPUs happens. If each physical CPU core only runs 1 kernel thread, then no expensive context switch will occur. When setting `hpx:threads=7`, we tell HPX to use 7 worker threads in total and use only one worker thread
per CPU core.

Figure 2.7. Compare DCA++ execution time among different number of HPX threads
Chapter 3. GPUDirect

3.1. Memory Bound Issue and Solution

Previous work [1] indicated that DCA++ is facing memory bound issue caused by the size of G4 matrix (two particle function). Figure 3.1 shows Performance of the most FLOP-intensive kernels compared against the roofline model of an NVIDIA V100 GPU on Summit. Each NVIDIA V100 GPU on Summit has 16GB High Bandwidth Memory 2, and the size of G4 matrix is estimated to take up about 12 GB HBM2 space in each GPU shown in a red dash circle in Figure 3.1. If a larger input size was provided, then each GPU might not be able to process and store the entire G4 matrix thereby we are limited to device memory size.

Figure 3.1. Roofline plot of a NVIDIA V100 GPU running DCA++ at production level on Summit. Figure adapted from [1]
We will further visualize the procedure on how we have memory bound issue in DCA++.
Currently, each MPI rank (with 1 GPU resource) keeps a private and full copy of G4 matrix (yet complete) and all MPI ranks do sum reduction at the end to form final G4 matrix on root rank via mpi_all_reduce shown as in Figure 3.2. Each GPU resource has its own private copy of G4, which is a size of 12 GB, and therefore hits memory bound.

3.2. GPUDirect on Summit

It is a necessary step to explore techniques and develop algorithm for a distributed version of G4 matrix in preparation of larger science runs when G4 matrix cannot fit on a single GPU. To alleviate the memory bound challenge in [5] on the V100s, we explore the NVIDIA NVLink interconnects on Summit nodes to take advantage of the high bandwidth to address memory bound issue.

NVIDIA’s GPUDirect peer-to-peer communication enables peer-to-peer memory access, transfers and synchronization between two GPUs [14]. For example, with GPUDirect, \(GPU_0 \) can read and write remote \(GPU_1 \) memory (load/store). Also, with GPUDirect, \texttt{cudaMemcpy()} initiates Direct Memory Access (DMA) copy from \(GPU_0 \) memory to \(GPU_1 \) memory.
3.3. MPI Ping-pong Benchmark

To test the bandwidth advantage of using GPUDirect on Summit, we develop a mini-application for comparing GPUDirect communication method and MPI GPU to Remote GPU method. A MPI ping pong program is used in this mini application. In this program, processes use MPI_Send and MPI_Recv to continually bounce messages off of each other until they decide to stop.

Figure 3.3 visualizes MPI GPU to Remote GPU method and Listing 3.1 shows the pseudo code. For the process of transferring an device allocated array from GPU_0 to GPU_1, it goes through several processes: allocates memory on the GPU_0, copies data from GPU_0 to the $host_0$ in the same rank, transfers data from $host_0$ to remote $host_1$ through MPI_send and MPI_receive, and finally copies data from $host_1$ to GPU_1. The implementation of this method can be found in https://github.com/weilewei/Ring_example_MPI_CUDA/blob/master/up_n_down.cpp.

![Figure 3.3. GPU data transfer between GPUs using traditional MPI GPU to Remote GPU method](image)

Listing 3.1. MPI GPU to Remote GPU
char* s_d_array; char* r_d_array; char* s_h_array; char* r_h_array;

for (long long size : std::vector<long long>{1, 2, 10, 100, 1000, 1000000, 30000000,
 100000000, 1000000000}) {
 alloc_d_char(size, &s_d_array);
 init_d(size, s_d_array, 'a');
 alloc_d_char(size, &r_d_array);

 s_h_array = (char*) malloc(size * sizeof(char));
 r_h_array = (char*) malloc(size * sizeof(char));

 bool ping = 0;
 startTimer();
 for (int i = 0; i < times; ++i) {
 if (rank == ping)
 {
 cudaMemcpy(s_h_array, s_d_array, size, cudaMemcpyDeviceToHost);
 MPI_CHECK(MPI_Send(s_h_array, size, MPI_CHAR, !ping, 0, MPI_COMM_WORLD));
 }
 else
 {
 MPI_CHECK(MPI_Recv(r_h_array, size, MPI_CHAR, ping, 0, MPI_COMM_WORLD,
 MPI_STATUS_IGNORE));
 cudaMemcpy(r_d_array, r_h_array, size, cudaMemcpyHostToDevice);
 }
 ping = !ping;
 }
 auto time = endTimer() / times;
if(rank == 0) {
 out << size << "\t" << time << "\t" << size / time * 1e-9 << "\n";
 std::cout << size << "\t" << time << "\t" << size / time * 1e-9 << "\n";
}

Figure 3.4 visualizes GPUDirect method and Listing 3.2 shows the pseudo code. For the process of transferring an device allocated array from GPU_0 to GPU_1, it goes through several processes: allocates memory on the GPU_0, transfers data from GPU_0 to remote GPU_1. CUDA-aware MPI is used in this case. The implementation of this method can be found in https://github.com/weilewei/Ring_example_MPI_CUDA/blob/master/gpuDirect.cpp.

Figure 3.4. GPU data transfer between GPUs using GPUDirect

Listing 3.2. GPUDirect peer to peer

```cpp
char* s_array; char* r_array;

for (long long size : std::vector<long long>{1, 2, 10, 100, 1000, 1000000, 30000000, 100000000, 1000000000}) {
```
alloc_d_char(size, &s_array);
init_d(size, s_array, 'a');
alloc_d_char(size, &r_array);

bool ping = 0;
startTimer();
for (int i = 0; i < times; ++i) {
 if (rank == ping)
 MPI_CHECK(MPI_Send(s_array, size, MPI_CHAR, !ping, 0, MPI_COMM_WORLD));
 else
 MPI_CHECK(MPI_Recv(r_array, size, MPI_CHAR, ping, 0, MPI_COMM_WORLD,
 MPI_STATUS_IGNORE));

 ping = !ping;
}
auto time = endTimer() / times;

if (rank == 0) {
 out << size << "\t" << time << "\t" << size / time * 1e-9 << "\n";
 std::cout << size << "\t" << time << "\t" << size / time * 1e-9 << "\n";
}
}
Figure 3.5 shows up to 17x speedup observed by DCA++ Lite mini-application using GPU Direct (NVLink) over regular communication (MPI GPU to remote GPU). One of the main reasons resulting in the bandwidth difference is that too many data copy operations occurred in regular communication method: data copy between GPU_0 to CPU_0, CPU_0 to CPU_1, and CPU_1 to GPU_1, which greatly slows down data transfer process.

Figure 3.6 shows workflow of distributed G4 with NVLink enabled. Since using NVLink in the data communication phase would greatly speedup the process, we plan to integrate NVLink into DCA++ code. In the original implementation shown in Figure 3.2, in each MPI rank, each G2 is performing product operation to generate G4, which is a private and full copy (yet complete) of final G4 matrix. Then, all MPI ranks do sum reduction at the end to form final and complete G4 matrix on root rank via mpi_all_reduce. With new implementation, each local G2 will also conduct product operation but only contribute to a small portion of G4. Then each locally generated G2 in different ranks will be sent to other different ranks, such that, each rank will see every G2. Every time when each rank
receives a G2, it will perform product operation to contribute to a small portion of its local
G4. After every rank see every G2 and finish its update of its small portion of G4, now
each rank owns a small but complete portion of G4. At the end, we will perform one more
step as in the original implementation, all MPI ranks do sum reduction at the end to form
final G4 matrix on root rank via mpi_all_reduce. Now, at the root rank, we will have a
full and complete final G4 matrix, the result we want.

The following example can help further illustrate the new implementation. Just like
what we have in Figure 3.6. Let’s assume we would like to have a final G4 matrix of size
2x2. In each MPI rank, instead of computing (product operation) a full but not complete
G4 in previous implementation, now each rank only computing a small portion of G4. For
example, in rank 0, it only computes G4(0,0), which is one forth of final G4 size; in rank
1, it only computes G4(0,1) and so on. Then we will have a "travel phase", meaning that
every G2 will be traveling and exposing in each rank to update a small portion of G4 in
that local rank. For example, G2_1 will be sent to rank 0, and do product operation to
update G4(0,0), so does the same to G2_2, G2_3. In other words, rank 0 will receive 4 different
G2s and complete the computation or update of G4(0,0). After the "travel phase", each
G2 has been traveled across the MPI world to finish their product operation in each MPI
rank, in other words, each MPI rank now has a complete update of its local G4, a small
portion of final G4 array. At the end, we will perform one more step as in the previous
implementation, all MPI ranks perform sum reduction at the end to form final G4 matrix
on root rank via mpi_all_reduce. Now, in rank 0, we have a final and complete G4 array
of size 4x4.
3.4. Bandwidth Measurement on NVLink on Summit

In order to use NVLink on Summit at scale, such as transferring data across multiple nodes and racks/cabinets, bandwidth measurement on NVLink with this regard is needed. Figure 3.7 shows the comparison results on NVLink bandwidth across nodes and racks/cabinets. We are focused on when the size of data transfer is about 28.61 Mb as the G2 array size in DCA++ is about 25 MB. The result shows that on-node GPUDirect has highest bandwidth than rest of the scenarios. On-node GPUDirect is about 2.2 speedup than two-node GPUDirect in same rack and 2.36 speedup than two-node in different racks.

We further submitted more job runs and observed that, for an array of size 953 Mb, 8 out of 10 runs have similar speed (23 Gb/s), one run is 20 Gb/s, another one is as slow as 16 Gb/s. For the slowest run result, two racks are just several aisles apart in the room, visualized in 3.9 (link: https://jobstepviewer.olcf.ornl.gov/summit/952157-3). The 23 Gb/s one also happens when racks are located on two sides of the room, visualized in 3.8 (link: https://jobstepviewer.olcf.ornl.gov/summit/951401-3). It seems the distance between racks (i.e. how racks are physically located in the facility room) would not impact
the bandwidth.

Figure 3.7. Compare bandwidth of data transfer on Summit using NVLink

Table 3.1. Compare NVLink bandwidth speedup on Summit

<table>
<thead>
<tr>
<th>Size of data transferred (Mb)</th>
<th>0.95</th>
<th>28.61</th>
<th>95.37</th>
<th>953.67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speedup (GB/s) for on-node / off-node</td>
<td>0.87</td>
<td>2.21</td>
<td>2.14</td>
<td>1.93</td>
</tr>
</tbody>
</table>
Figure 3.8. Two nodes are located in two different sides of the facility room

Figure 3.9. Two nodes are located close to each other in the facility room

The reason is Summit has a non-blocking, three-level fat-tree [15] (i.e., folded Clos)
topology. This means is that there are three levels of switches: first-, second-, and third-level for simplicity’s sake. On Summit, we call these Top Of Rack (TOR) switches, Leaf switches, and Spine switches, respectively. The first level switches connect to 18 nodes in the rack. Each client has two ports and each port connects to a different first-level switch. Clients connected to the same switch do not experience congestion (overloaded links in the middle of the network), but they can experience endpoint contention (e.g., multiple hosts sending to one host). Traffic between two hosts in the same rack using the same port should see almost no variability in performance because there is one switch hop and the switch is non-blocking.

Each first level switch also has 18 links for connecting to second-level switches. Groups of first-level switches will connect to 18 different second-level switches. Traffic between clients within a group that are in separate racks (i.e. connected to different first-level switches in different racks) or traffic between two clients in the same but connected to opposite client ports (i.e., connected to different first-level switches albeit in the same rack) has to traverse three switch hops (first-level, second-level, first-level). In this case, traffic flows can experience both congestion and endpoint contention. This leads to variability.

On Summit, nodes are grouped in sets of 324 (18 nodes per rack x 18 racks per group).

Lastly, each second-level switch also connects to 18 third-level switches. Again, they are grouped in sets of 18 second-level switches. Any traffic that cannot be serviced by a first- or second-level switch must traverse five switch hops and is susceptible to more opportunities to encounter congestion or endpoint contention leading to the highest variability.

Summit’s network uses adaptive routing to change the path if a flow detects congestion. This can also lead to variation if it happens mid-flow on some but not all tests.

3.5. Pipeline Ring Algorithm

In order to address memory bound issue in DCA++, we design a pipeline ring algorithm to process MPI communication. This algorithm assumes that there are P ranks, and each rank locally generates p number of G2 array, so each rank will see all P copies of G2 after
the pipeline ring algorithm. This algorithm will work well if every MPI rank has similar
time cost for generating G2 and updating G4, and each MPI rank generates the same
number of G2 arrays.

The pseudo code show in 3.3 has a for-loop assuming each rank generate P number
of G2. In this algorithm, each MPI rank takes a newly generated G2 array to update G4
array, makes a copy of this G2 array to an outgoing array that will be asynchronously sent
to its right neighbor later, receives a copy of G2 array from its left neighbor that will be
copied into local G2. Overall, this algorithm will be conducted in P steps, and in each
time-step, each MPI rank will send out one G2 array, use local G2 to update G4 and send
out one G2 array.

In our first attempt to implement the pipeline ring algorithm, we only store one local
copy of G2, one buffer copy of outgoing copy of G2, and one buffer copy of incoming copy
of G2. In the future, we are considering storing all the P copies of G2s (or some of G2s),
which is just an variant of the lock step algorithm. One possible limitation of storing P
copies of G2s is increasing device memory as value of P could be hundreds of thousands so
large that it will trigger another memory bound issue. Also, we are considering attaching
task continuation and adding more overlap between communication and computation to
fully utilize hardware resources. Which version is more efficient may also depend on the
relative cost of generating G2, cost of updating G4, and cost of MPI communication.

Listing 3.3. pipeline ring algorithm

#define MOD(x,n) (((x) % (n))

left_neighbor = MOD((myrank-1 + mpi_size), mpi_size);
right_neighbor = MOD((myrank+1 + mpi_size), mpi_size);

for(iter=0; iter < niter; iter++)
{

// each rank generate same number of G2

generateG2(G2);
update_local_G4(G2);

// get ready for send

sendbuf_G2 = G2; // copy into buffer
send_tag = 1 + myrank;
send_tag = 1 + MOD(send_tag-1, MPI_TAG_UB); // MPI_TAG_UB is largest tag value

for(icount=0; icount < (mpi_size-1); icount++)
{
 // encode the originator rank in the message tag as tag = 1 + originator_irank
 originator_irank = MOD((myrank-1)-icount + 2*mpi_size), mpi_size);
 recv_tag = 1 + originator_irank;
 recv_tag = 1 + MOD(recv_tag-1, MPI_TAG_UB); // 1 <= tag <= MPI_TAG_UB

 MPI_Recv(recvbuf_G2, source=left_neighbor, tag = recv_tag, &recv_request);
 MPI_Isend(sendbuf_G2, dest=right_neighbor, tag=send_tag, &send_request);
 mpi_wait(recv_request); // wait for G2 to arrive

 G2 = recvbuf_G2; // copy from buffer
 update_local_G4(G2);

 mpi_wait(send_request); // wait for sendbuf_G2 to be available again

 // get ready for send
 sendbuf_G2 = G2;
 send_tag = recv_tag;
}; // end for icount
}; // end for iter
Chapter 4. Conclusion and Future Work

In this project report, we introduced Dynamic Clustering Algorithm (DCA++) and analyzed how we use High-performance ParalleX (HPX) and NVLink to build high-level parallel abstraction layers with a goal of improving performance of DCA++ software.

For threading abstraction layer, we added a threading abstraction layer using HPX user-level light-weight threading model such that users can switch between custom-made thread pool and hpx thread pool via compile time input without changing too much codes in DCA++. We also presented the results of HPX implementation: HPX-enabled DCA++ 1) produced same results to custom thread pool in DCA++ and 2) has slightly faster runtime performance than the custom-made thread pool option in DCA++, but we consider the 1% speedup is within the error margin. In the future, we will add more tasks continuation methods to better utilize hardware resources, such as, facilities in HPX: dataflow, then, etc.

For NVLink method, we evaluated NVLink bandwidth on Summit, using ping-pong algorithm, comparing regular MPI GPU to remote GPU method, and also analyzing NVLink bandwidth under different scenarios (on-node, two-node in same/different racks on Summit). We concluded that using NVLink would speedup to our min-application. We also introduced memory bound in DCA++ and detailed how we integrate pipelined ring algorithm and NVLink to address the memory bound issue. In the future, we plan to implement pipelined ring algorithm to distribute G4 array and profile our implementation.

Also, we plan to integrate GPUDirect into HPX so we can construct task dependency and attach more task continuations by overlapping network communication and computation to fully utilize hardware resources and improve code performance. For example, GPUDirect function call is attached to MPI API (i.e. MPI_Isend, MPI_Irecv), and we can wrap return value of MPI call into hpx::future and then attach continuation with that future. In this way, once the MPI_Irecv, for instance, has finished, it will automatically continue to execute next task, if available.
References

Vita

Weile Wei finished his undergraduate studies at Shandong Jianzhu University, Jinan, China and Griffith University, Gold Coast, Australia. In May 2018 he had opportunities to pursue graduate studies in Computer Science at Louisiana State University and work as a graduate software developer with STE||AR group at Center for Computation and Technology located at LSU. During his stay at LSU, he has completed several projects in the field of distributed machine learning, parallel computing and high performance computing. Also, he had software developer internships experience with National Center for Atmospheric Research for developing file system library, and with Oak Ridge National Lab for researching programming model for Dynamic Clustering Algorithm (DCA++). His researches has been presented in several international conference papers and posters.