
Microsoft Visual C++ Demangling
Michael LeSane, Center for Computation & Technology, Louisiana State University

What are Mangled Names?

• Refer to strings generated by compilers containing encoded

information about declarations such as functions, operator

overloaders, templates, and static objects; also include

details such as typing, arguments, and identifiers

• Used by the linker in order to derive information about such

declarations, as well as to distinguish between declarations

with identical names in different namespaces.

• Are more compact and parsing is easier for the compiler as

a result

Types of Mangling Schemes

There are a number of different mangling schemes, but the

most common types for the C++ programming language are

those utilized by the GNU C++ Compiler and the Microsoft

Visual C++ compiler.

The Main Issue

Whereas the mangling scheme of GCC, an open-source

compiler, is well-documented and open-source de-mangling

code in both the C and C++ programming languages is readily

available, Microsoft offers little information regarding how to

parse such strings.

To my knowledge, no open-source Visual C++ de-mangling

code written in C++ has existed before now, with most existing

code on Unix-like systems depending on C-based libraries

developed by the GNU project, and code on Windows systems

making direct calls to the win32 API.

My work this summer been to develop a C++-based de-

mangling library for the HPX project.

Examples of Visual C++ Mangled Names

Selected Parsing Grammar Examples

Selected Code Examples

Tasks

My initial task was to search for already existing open-source

code released under a compatible-license. What I did find was

in another language, and virtually impossible follow the logic of,

or to port without also porting additional libraries in a very large

project.

As a result, I was tasked with writing a new code to carry out

the task, and eventually developed a program capable of

parsing the 70-80 examples provided by various resources.

Since then, I have been focusing on incorporating features

from the most recent de-mangling scheme while attempting to

parse the thousands of lengthy mangled names that are a part

of HPX’s compiled binaries and linked libraries on Windows.

Other Issues

Because there is no publicly available official documentation

on how to de-mangle the Microsoft Visual C++ scheme, the

only resources available are derived from reverse-engineering.

Of these resources, there is no single clear and

comprehensive resource regarding the parsing grammar, and

few offer complete details regarding the various code

definitions and rules associated with them.

Open source de-mangling code which already exists, such as

that of the Wine project, cannot parse the most recent Visual

C++ mangling scheme.

Most open source de-mangling code is released under licenses

incompatible with that of the HPX project. Code released

under compatible licenses still must be re-licensed under that

of HPX before being incorporated into the project’s core

libraries, for the sake of uniformity. In order to do this,

however, the original author’s permission is required.

Significance to HPX and Beyond

• Will help the HPX project by facilitating the establishment of

a common format between mangled names of incompatible

schemes

• Could be of use to the LLVM project / Clang compiler, used

by Mac OS X and the FreeBSD project; while it is capable of

mangling names according to the Visual C++ scheme, it

contains no library for de-mangling them

• Could be of use to the ReactOS project, which aims to

develop a free, open-source , and binary-compatible clone

of Microsoft Windows

Declaration Visual C++

int myint; ?myint@@3HA

int qualifier::mystaticint; ?mystaticint@qualifier@@3HA

int* myintptr; ?myintptr@@3PAHA

void* myvoidptr; ?myvoidptr@@3PAXA

int f_i_vptr(void*); ?f_i_vptr@@YAP6AHXA

void* func_vptr_i(int); ?f_i_vptrv@@YAPAHPAX@Z

int (*funcptr)(int); ?funcptr_i_i@@3P6AHH@ZA

int mytemplate<int>::method(void); ?method@?$mytemplate@H@@YAHXZ

mangledname ‘?’ basicname qualification signature storageclass

basicname ident ‘@’

‘?’ operatorcode

‘?$’ template

qualification ‘@’

ident ‘@’ qualification

signature fcode functionsignature

dcode datasignature

functionsignature callingconvention typecode typecode arguments

fcode ‘Y’ (Complex)

‘S’ (Static)

‘U’ (Virtual)

datasignature typecode

dcode ‘3’

‘2’

ident (A-Z||a-z||_)+ (A-Z|a-z|_|0-9)*

template ident ‘@’ arguments ‘@’

arguments typecode arguments

typecode ‘@’

‘X’ (void)

‘Z’

typecode ‘D’ (char)

‘H’ (int)

‘M’ (float)

Specialtypecode

Backref

specialtypecode Have specific grammar rules; are similar to function

signatures; include pointers and references

Callingconvention ‘A’ (__cdecl)

‘E’ (__thiscall)

‘G’ (__stdcall)

Storageclass ‘A’ (normal)

‘B’ (const)

‘C’ (volatile)

operatorcode ‘0’ (constructor)

‘6’ (operator<<)

‘H’ (operator+)

Backref [0-9]

(refer to previous arguments or basicname instances)

