
HPX – An open source C++ Standard Library for Parallelism and
Concurrency
Extended Abstract

Thomas Heller
Friedrich-Alexander University

Erlangen-Nuremberg
Erlangen, Bavaria, Germany

Patrick Diehl
Polytechnique Montreal
Montreal, Quebec, Canada

Zachary Byerly
Louisiana State University

Baton Rouge, Louisiana, USA

John Biddiscombe
Swiss Supercomputing Centre (CSCS)

Lugano, Switzerland

Hartmut Kaiser
Louisiana State University

Baton Rouge, Louisiana, USA

ABSTRACT
To achieve scalability with today’s heterogeneous HPC resources,
we need a dramatic shift in our thinking; MPI+X is not enough.
Asynchronous Many Task (AMT) runtime systems break down the
global barriers imposed by the Bulk Synchronous Programming
model. HPX is an open-source, C++ Standards compliant AMT
runtime system that is developed by a diverse international com-
munity of collaborators called The Ste| |ar Group. HPX provides
features which allow application developers to naturally use key
design patterns, such as overlapping communication and compu-
tation, decentralizing of control flow, oversubscribing execution
resources and sending work to data instead of data to work. The
Ste| |ar Group is comprised of physicists, engineers, and computer
scientists; men and women from many different institutions and
affiliations, and over a dozen different countries. We are committed
to advancing the development of scalable parallel applications by
providing a platform for collaborating and exchanging ideas. In this
paper, we give a detailed description of the features HPX provides
and how they help achieve scalability and programmability, a list
of applications of HPX including two large NSF funded collabora-
tions (STORM, for storm surge forecasting; and STAR (OctoTiger)
an astrophysics project which runs at 96.8% parallel efficiency on
643,280 cores), and we end with a description of how HPX and the
Ste| |ar Group fit into the open source community.

CCS CONCEPTS
• Computing methodologies → Parallel computing methodolo-
gies;
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1 INTRODUCTION
The free lunch is over [19] - the end of Moore’s Law means we have
to use more cores instead of faster cores. The massive increase in
on-node parallelism is also motivated by the need to keep power
consumption in balance [18]. We have been using large numbers of
cores in promising architectures for many years, like GPUs, FPGAs,
and other many core systems; now we have Intel’s Knights Landing
with up to 72 cores. Efficiently using that amount of parallelism,
especially with heterogeneous resources, requires a paradigm shift;
we must develop new effective and efficient parallel programming
techniques to allow the usage of all parts in the system. All in
all, it can be expected that concurrency in future systems will be
increased by an order of magnitude.

HPX is an open-source, C++ Standards compliant, Asynchronous
Many Task (AMT) runtime system. Because HPX is a truly collabo-
rative, international project with many contributors, we could not
say that it was developed at one (or two, or three...) universities.
The Ste| |ar Group was created “to promote the development of
scalable parallel applications by providing a community for ideas,
a framework for collaboration, and a platform for communicating
these concepts to the broader community.” We congregate on our
IRC channel (#ste| |ar on freenode.net), have a website and blog
(stellar-group.org), as well as many active projects in close rela-
tion to HPX. For the last 3 years we have been an organization in
Google Summer of Code, mentoring 17 students. The Ste| |ar Group
is diverse and inclusive; we have members from at least a dozen
different countries. Trying to create a library this size that is truly
open-source and C++ Standards compliant is not easy, but it is
something that we are committed to. We also believe it is critical to
have an open exchange of ideas and to reach out to domain scien-
tists (physicists, engineers, biologists, etc.) who would benefit from
using HPX. This is why we have invested so much time and energy
into our two scientific computing projects: STORM, a collaborative
effort which aims to improve storm surge forecasting; and STAR
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(OctoTiger) an astrophysics project which has generated exciting
results running at 96.8% parallel efficiency on 643,280 cores. In ad-
dition leading the runtime support effort in the european FETHPC
project AllScale to research further possibilities to leverage large
scale AMT systems.

In the current landscape of scientific computing, the conven-
tional thinking is that the currently prevalent programming model
of MPI+X is suitable enough to tackle those challenges with minor
adaptations [1]. That is, MPI is used as the tool for inter-node com-
munication, and X is a placeholder to represent intra-node paral-
lelization, such as OpenMP and/or CUDA. Other inter-node commu-
nication paradigms, such as partitioned global address space (PGAS),
emerged as well, which focus on one sided messages together with
explicit, mostly global synchronization. While the promise of keep-
ing the current programming patterns and known tools sounds
appealing, the disjoint approach results in the requirement to main-
tain various different interfaces and the question of interoperability
is, as of yet, unclear [8].

Moving from Bulk Synchronous Programming (BSP) towards
fine grained, constraint based synchronization in order to limit
the effects of global barriers, can only be achieved by changing
paradigms for parallel programming. This paradigm shift is enabled
by the emerging Asynchronous Many Task (AMT) runtime systems,
that carry properties to alleviate the aforementioned limitations.
It is therefore not a coincidence that the C++ Programming Lan-
guage, starting with the standard updated in 2011, gained support
for concurrency by defining a memory model in a multi-threaded
world as well as laying the foundation towards enabling task based
parallelism by adapting the future [2, 9] concept. Later on, in 2017,
based on those foundational layers, support for parallel algorithms
was added, which coincidentally, covers the need for data parallel
algorithms. The HPX parallel runtime system unifies an AMT tai-
lored for HPC usage combined with strict adherence to the C++
standard. It therefore represents a combination of well-known ideas
(such as data flow [6, 7], futures [2, 9], and Continuation Passing
Style (CPS)) with new and unique overarching concepts. The com-
bination of these ideas and their strict application forms underlying
design principles that makes this model unique. HPX provides:

• A C++ Standards-conforming API enabling wait-free asyn-
chronous execution.

• futures, channels, and other asynchronous primitives.
• An Active Global Address Space (AGAS) that supports load
balancing through object migration.

• An active messaging network layer that ships functions to
data.

• A work-stealing lightweight task scheduler that enables
finer-grained parallelization and synchronization.

• The versatile and powerful in-situ performance observation,
measurement, analysis, and adaptation framework APEX.

• Integration of GPUs with HPX.Compute [5] and HPXCL for
providing a single source solution to heterogeneity

HPX’s features and programming model allow application devel-
opers to naturally use key design patterns, such as overlapping
communication and computation, decentralizing of control flow,
oversubscribing execution resources and sending work to data in-
stead of data to work. Using Futurization, developers can express

complex data flow execution trees that generate millions of HPX
tasks that by definition execute in the proper order. This paper is
structured as follows:
In Section 2 we summarize briefly the important features of HPX
for parallelism and concurrency. The application of HPX in differ-
ent high performance computing related topics are presented in
Section 3. In Section 4 we review the aspect of open source software
and community building. Finally, we conclude with Section 5.

2 HPX RUNTIME COMPONENTS
In this section we briefly give an overview of the HPX runtime
system components with a focus on parallelism and concurrency.
Figure 1 shows five runtime components of the runtime system
which are briefly reviewed in the following. The core element is
the thread mamager which provides the local thread management,
see Section 2.1. The Active Global Address Space (AGAS) provides
an abstraction over globally addressable C++ objects which sup-
port RPC (Section 2.2). In Section 2.3 the parcel handler which
implements the one-side active massaging layer is reviewed. For
runtime adaptivity HPX exposes several local and global perfor-
mance counters, see Section 2.4. For more details we refer to [16].
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Figure 1: Overview of the HPX Runtime System compo-
nents.

2.1 Thread manager
Within HPX a light-weight user level threading mechanism is used
to offer the necessary capabilities to implement all higher level
APIs. Predefiend scheduling policies are provided to determine the
optimal task scheduling for a given application and/or algorithm.
This enables the programmer to focus on algorithms instead of
thinking in terms of CPU resources. The predefined scheduling
policies may be interchanged at runtime, additionally, new sched-
uling policies may be provided by the user for more application
specific control. The currently available scheduling policies are
summarized by: static: the static scheduling policy maintains one
queue per core while disabling task stealing alltogether; thread
local: the thread local policy is currently the default policy. This
policy maintains one queue per core, whenever a core runs out of
work, tasks will be stolen from neighboring queues, high priority
queues also exist to prioritize important tasks over others; hierar-
chical: the hierarchical policy maintains a tree of queues with the
purpose of creating an hierarchical structure, while new tasks are
always enqueued at the root, when one core fetches new work, the
available tasks trickle down the hierarchy.
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2.2 Active Global Address Space
After having the lightweight user level tasks available the next
important module within HPX is the Active Global Address Space
(AGAS). It’s main purpose is to serve as the foundation to support
distributed computing and is related to other global address space
attempts which are represented by the PGAS family. Their main
purpose is to hide explicit message passing. By having each object
living in AGAS being represented by a GID (Global ID), the location
of said object does not need to be bound to a particular locality
and leads to uniformity in terms of independence whether a object
is located remotely or local. In addition, this independence allows
for transparent migration between different process local address
spaces with AGAS being responsible for proper address resolution.

2.3 Parcel
To support distributed computing, mechanisms for exchanging mes-
sages over a network interconnect are necessary. The current HPC
landscape is dominated by two major programming paradigms. The
first is represented by MPI which offers a wide variety of different
communication primitives for passing messages between processes.
It is best known for its two-sided communication primitives where
the sending side issues a receive operation which contains the
buffers, size of the buffers, a tag and the destination. The destina-
tion has to proactively post the receiving part of this operation.
Those operations are extended by asynchronous versions. In the
HPX programming model, neither of those previously discussed
forms of communication seems to be appropriate. While having
a versatile form of invoking light weight threads locally, it seems
natural that this should be extended in such a way to allow for
remote invocations of threads as well. This form of communication
is often referred to as RPC or Active Messaging. An Active Message
in HPX is called a Parcel. The parcel is the underlying concept that
allows us to implement RPC calls to remote localities in a C++ fash-
ion. That means that we require a arbitrary, yet type safe, number
of arguments, as well as the means to return values from remote
procedure invocations. This operation is one-sided, as the RPC des-
tination does not need to actively poll on incoming messages, and
follows the semantics of a regular C++ member function call. For
more details we refer to [3, 14].

2.4 Performance counters
One important feature that helps improve performance portability
is the means to be able to intrinsically profile certain aspects of a
program. To assist in the decision making process, an HPX intrinsic
performance counter framework has been devised, which is able
to encompass HPX internal performance metrics as well as being
extensible so that application specific metrics may be supplied,
or platform dependant hardware performance counters (eg. using
PAPI). The performance counters are readable via AGAS, by having
each counter registered with a specific symbolic name, making
them accessible throughout the system (i.e. from any node). For
more details we refer to [10].

3 APPLICATIONS OF HPX IN HIGH
PERFORMANCE COMPUTING

The concepts of parallelism and concurrency were successfully
applied in following applications.

LibGeoDecomp N-Body Code. Scientific computing simulations
have generally been developed by domain scientists (physicists,
materials scientists, engineers, etc.), even those who either cur-
rently use or would greatly benefit from using HPC resources.
LibGeoDecomp, a Library for Geometric Decomposition, reduces
the effort required to develop scalable, efficient codes. Libgeode-
comp handles the spatial and temporal loops, as well as the data
storage, while the domain scientist supplies the code required to
update one unit. Heterogeneous machines make this even more
difficult. A 3D N-Body code written in LibGeoDecomp was used to
compare the performance of the MPI backend and the HPX back-
end. HPX showed perfect scaling at the single node level ( 98%
peak performance) and 89% peak performance using the Xeon Phi
Knights Corner coprocessor [13]. Further improvements to the
communication layer [15] have improved the performance of this
application,outperforming the MPI implementation by a factor of
1.4 and achieving a parallel efficiency of 87% at 1024 compute nodes
(16384 cores).

C++ Co-array Semantics. HPX has been used to design a high
performance API, written in C++, that allows developers to use
semantics similar to Co-array Fortran to write distributed code. The
goal was to enable the creation a more easily understandable SPMD-
style applications, while adhering to the C++ standard and taking
advantage of cutting edge features of the language. Results from
performance measurements show that scalability and good perfor-
mance can be achieved, and with much better programmability and
development efficiency, especially for domain scientists [20].

GPGPU support. There is currently no usable standards-conforming
library solution for writing C++ code that is portable across hetero-
geneous architectures (GPGPUs, accelerators, SIMD vector units,
general purpose cores). We have set out to provide a solution to
this problem with HPX. [12] describes the design and implemen-
tation based on the C++17 Standard and provides extensions that
ensure locality of work and data. The well-known STREAM bench-
mark was ported and compared to running the corresponding code
natively. We show that using our single source, generic, and exten-
sible abstraction results in no loss of performance. A SYCL backend
for this API has also been developed, allowing for single-source
programming of OpenCL devices in C++. A comparison using the
STREAM benchmark showed only minimal performance penalties
compared to SYCL for large arrays.

Linear Algebra Building Blocks. Codes that make use of different
threading libraries (OpenMP, Kokkos, TBB, HPX, etc.) for on node
parallelism cannot be easily mixed since they all wish to own the
compute resources and composability of code is reduced when
diffferent runtimes are mixed. We have therefore begun the process
of creating linear algebra building blocks that can make use of
vendor optimized libraries (such as MKL, cublas) on a node, but
be integrated cleanly with HPX to make higher level BLAS type
functions that are commonly used in HPC applications. Current
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benchmarks (Cholesky) show that the HPX versions perform as
well as the leading libraries in this area.

Storm Surge Forecasting. Tropical cyclones pose a significant
threat to both people and property. The most damaging can cause
tens of billions of dollars in property damage, and the deadliest can
kill hundreds of thousands of people. Storm surge causes most of
the fatalities associated with tropical cyclones, but using computa-
tional models it can be forecasted. ADCIRC [17] is an unstructured
grid coastal circulation and storm surge prediction model, widely
used by the coastal engineering and oceanographic communities.
The unstructured triangular grid allows for seamless modeling of a
large range of scales, allowing higher resolution near the coast and
inland and lower resolution in the open ocean. Producing reliable
forecasting results enables emergency managers and other officials
to make decisions that will reduce danger to human lives and prop-
erty. Fast, efficient calculation of results is critical in this role, and so
the importance of high performance computing is critical. We have
used a novel approach [4] to update the Fortran MPI implementa-
tion of a discontinuous Galerkin version of ADCIRC, DGSWEM,
to use HPX and LibGeoDecomp as a parallel driver, while still re-
taining the original Fortran source code. LibGeoDecomp provides
an HPX data flow based driver which greatly mitigates problems
of load imbalance, exposes more parallel work, overlaps communi-
cation and computation - all leading to decreased execution time.
With HPX, we are also able to run efficiently on Intel’s Xeon Phi
Knights Landing on TACC’s Stampede 2.

Astrophysics Research. The astrophysics research group at Louisiana
State University studies the mergers of double white dwarf binary
star systems using hydrodynamic simulations. These mergers are
believed to be the source of Type Ia Supernovae, which due to the
physics of the explosion, always produce roughly the same amount
of light. These "standard candles" were used by two independent
groups in the discovery of the accelerating expansion of the uni-
verse, winning them the 2011 Nobel Prize in Physics. Due to the
relatively short timescale on which these supernovae occur, the
light from the binary star system leading up to the merger has
been rarely observed. So we rely on computer simulations to give
us insights into these mergers. Previously, the group at LSU used
static uniform cylindrical mesh hydrodynamic code, written in
Fortran and parallelized with MPI to simulate these mergers. In a
collaborative effort funded by the NSF, the group has developed a
highly efficient, Adaptive Mesh Refinement simulation based on
HPX, using the parallel C++ programming model which is now
being incorporated into the ISO C++ Standard. Futurization is used
to transform sequential code into wait-free asynchronous tasks.
They demonstrate a model run using 14 levels of refinement, which
achieves a parallel efficiency of 96.8% on NERSC’s Cori (643,280
Intel Knights Landing cores) using billions of lightweight threads.

4 HPX AND OPEN SOURCE
Open source software (OSS) in high performance computing is
already prevalent, i. e. all super computers in Top 500 list released
2017 run on Linux/Unix. More recently collaborative projects, like
OpenHPC1, where vendors, educational institutions, and research
1http://www.openhpc.community/

organizations try to enable the complete HPC stack as OSS. One of
their statements is they “will provide flexibility for multiple config-
urations and scalability to meet a wide variety of user needs”. In the
previous sections we argued that HPX can be used to address the
scalability on multiple configurations. One example is the seamless
integration of acceleration cards, like GPUs [11] and Xeon Phi, in
the asynchronous execution graph.
Responding to requests from users, HPX core developers have
a implemented several important features, including flexible but
standards conforming parallel algorithms, IBVerbs and libfabrics
parcelports, and thread priorities. As demonstrated by the ratio
of closed tickets to total tickets generated by non-core developers,
the team of HPX core developers is responsive to the requests of
its users. HPX has a geographically decentralized team of core de-
velopers, each supported by seperate funding, and a much larger
team of other developers contributing to not only to HPX but to
other projects using HPX. Because of the exciting, cutting edge
work being done, HPX attracts top C++ talent, many of which are
students.

This section focus on the statistics with respect to open source
software, see Table 1. The complete source code of HPX is hosted on
github2 (702 stars so far) and contains 598093 lines of code where
465869 are C++ code3. HPX’s stable version is 1.0 containing 15
releases. HPX is licensed under Boost Software License (Version 1.0)
which conforms to the Free/Libre Open Source Software (FOSS) con-
cept. Continuous integration is done for Linux with CircleCI and for
Windows with AppVeyor. Another aspect of open source software

Attribute
License Boost Software License, Version 1.0
Version 1.0 with 15 releases
Commits 18431 from 78 contributors
Lines of Code 465869 (pure C++) and 598093 (all

files)
Continuous
Integration

CircleCI and AppVeyor

Table 1: Statistics of HPX’s source code and community

is its community; HPX is developed under the umbrella of Ste| |ar
group which includes 78 fellows from all over the world who con-
tributed 17136 commits. Figure 2(a) shows that in the last two years
approximately 10 people contributed to HPX each month. Since
2014 the Stellar group was accepted as an organization for Google
Summer of Code (GSoC). In the last three summers 17 students
contributed valuable features to HPX or application using HPX.
Figure 2(b) shows the commits per month since 2008 when HPX
was hosted on github. Since 2014 the commits per month increase
during the summer due to contributions of the GSoC students.

5 CONCLUSION AND OUTLOOK
On the latest and future super computers effective and efficient
parallel programming techniques are necessary to address the het-
erogeneity of the system. In addition, the relevance of an open

2https://github.com/STEllAR-GROUP/hpx
3https://www.openhub.net/p/stellar-hpx/
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https://github.com/STEllAR-GROUP/hpx
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(a) Contributors per month. In the last to years we had around 10 different
contributors per month.

(b) Commit per month from 78 contributors. Note, that some of this contribu-
tors are GSoC students which contribute for three months during the summer.
Therefore, in the summer the commits per month increase.

Figure 2: Commits and contributors from the beginning of
2008 when HPX was hosted on github. The picures were
taken from openhub.

source solution for a HPC stack, like the OpenHPC project, is de-
veloping. With HPX as an open source C++ standard library for
parallelism and concurrency both of these features are addressed.
First, we provide a parallel, AMT runtime system tailored to, but
not limited to, HPC usage. One focus is the strict adherence to the
C++ standard, where well-known concepts, i. e. futures, are imple-
mented, as well as contributing new innovative ideas like Continu-
ation Passing Style programming and dataflow to the broader C++
Community. Second, HPX can be used to write applications for het-
erogeneous many core systems, without changes to the code – with
HPX.Compute [5] we provide a unified model for heterogeneous
programming using CUDA and SYCL to provide a single source
solution to heterogeneity. With HPXCL we provide a means for
application developers to write GPU kernels (CUDA and OpenCL)
which can be compiled and run asynchronously on arbitrary devices
in a heterogeneous system.

We have shown the successful application of HPX in geomet-
ric decomposition, storm surge forecasting, linear algebra, astro-
physics, crack and fracture mechanics, and computational fluid
dynamic. As one example, HPX showed perfect scaling for the
three dimensional N body benchmark within LibGeoComp at the
single node level (98%) and (89%) peak performance on the Xeon
Phi Knights Corner coprocessor and could outperform MPI imple-
mentation by a factor of 1.4. For the astrophysics study of merging
double white dwarf binary star systems, a parallel efficiency of
96.8% on NERSC’s Cori using 643,280 Intel Knights Landing cores
was demonstrated using billions of lightweight threads.
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