
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Octo-Tiger: Binary Star Systems
with HPX on Nvidia P100

Gregor Daiß

Course of Study: Informatik

Examiner: Prof. Dr. Dirk Pflüger

Supervisor: David Pfander

Commenced: November 3, 2017

Completed: May 3, 2018

Abstract

Stellar mergers between two suns are a significant field of study since they can lead to astrophysical
phenomena such as type Ia supernovae. Octo-Tiger simulates merging stars by computing self-
gravitating astrophysical fluids. By relying on the high-level library HPX for parallelization and Vc
for vectorization, Octo-Tiger combines high performance with ease of development. For accurate
simulations, Octo-Tiger requires massive computational resources. To improve hardware utilization,
we introduce a stencil-based approach for computing the gravitational field using the fast multipole
method. This approach was tailored for machines with wide vector units like Intel’s Knights
Landing or modern GPUs. Our implementation targets AVX512 enabled processors and is backward
compatible with older vector extensions (AVX2, AVX, SSE). We further extended our approach
to make use of available NVIDIA GPUs as coprocessors. We developed a tasking system that
processes critical compute kernels on the GPU or the processor, depending on their utilization.
Using the stencil-based fast multipole method, we gain a consistent speedup on all platforms, over
the classical interaction-list-based implementation. On an Intel Xeon Phi 7210, we achieve a
speedup of 1.9x. On a heterogeneous node with an Intel Xeon E5-2690 v3, we can obtain a speedup
of 1.46x by adding an NVIDIA P100 GPU.

3

Contents

1 Introduction 13
1.1 Related Works . 14
1.2 Structure of this Work . 14

2 Octo-Tiger 17
2.1 Hydrodynamics Solver . 17
2.2 Gravity Solver . 18
2.3 Optimized Gravity Solver . 25

3 Parallelism Libraries 31
3.1 HPX - A High Level Runtime Framework for Local and Distributed Task Parallelism 31
3.2 Vc - A High Level Library for Data-Level Parallelism 32

4 Octo-Tiger on Intel Knights Landing 35
4.1 Vectorized FMM Interaction Kernels Using an Interaction List 35
4.2 Vectorized FMM Interaction Kernels using a Stencil-based Approach 36
4.3 Implementation of the Stencil FMM Interaction Kernels 37
4.4 Further optimizations . 38
4.5 Overview over the Stencil FMM Interaction Kernels 39

5 Octo-Tiger’s FMM in a Heterogeneous Environment 41
5.1 Basic Version . 41
5.2 Hetereogenous Version . 42
5.3 Scheduler Parameters . 44

6 Results 45
6.1 Scenarios . 45
6.2 Toolchain . 46
6.3 Platforms . 46
6.4 Performance Comparison between the Stencil FMM Kernels and the Interaction

List FMM Kernels . 47
6.5 GPU Tests . 55

7 Conclusion and Future Work 61

Bibliography 63

5

List of Figures

2.1 Visualization of the adaptive octree from our prior work [PDM+18] 19
2.2 Visualization of discretized spherical stencil from our prior work [PDM+18]. This

stencil is implied by the opening criteria. 22

6.1 Comparison of the node-level scaling on an Intel Xeon CPU E5-2660 v3. 51
6.2 Comparison of the node-level scaling on an Intel Xeon Gold 5120. 51
6.3 Comparison of the node-level scaling on an Intel Xeon Gold 6148. 52
6.4 Comparison of the node-level scaling on a Xeon Phi 7210. 52
6.5 Comparison of the runtime for a different number of Cuda streams using either one

or two P100 GPUs. We use scenario 2 and the platform argon-tesla for this test. . 57
6.6 Comparison of the runtime for a different number of Cuda streams using either one,

two or four GTX 1080 Ti GPUs. We use scenario 2 and the platform argon-gtx for
this test. 57

6.7 Comparison of the runtime using a different number of Cuda streams per GPU. We
use scenario 2 and the platform argon-gtx for this test. Each of the three runs will
eventually use all eight GPUs, albeit with a different number of streams per GPU. 58

6.8 Distributed run of Octo-Tiger with scenario 5. We use 12 to 60 compute nodes,
each with or without their P100. 58

7

List of Tables

2.1 Overview over all interaction list FMM kernels and their respective, scalar algorithm. 30

6.1 Most compute intensive parts of Octo-Tiger when using the stencil FMM kernels
on a Haswell Processor. 48

6.2 Per core performance using the refactored Octo-Tiger. 48
6.3 Runtime for various kernel combination. Either we use only the interaction list

kernels (left), we use one of the stencil kernels and use the interaction kernels for
the rest (middle), or only the stencil-based kernels (right). 49

6.4 Speedup obtained by using stencil FMM kernels over the interaction list FMM kernels. 53
6.5 Runtime for various kernel combination. Either we use only the interaction list

kernels (left), one stencil FMM kernel (middle), or only the stencil-based kernels
(right) . 53

6.6 Runtimes of scenario 2 using either CPU only or CPU/GPU combined. 55
6.7 Runtimes of scenario 3 using either CPU only or CPU/GPU combined. 55
6.8 Runtimes of scenario 4 using either CPU only or CPU/GPU combined. 55

9

List of Algorithms

1 The basic Fast Multipole Method (FMM) algorithm. 20

2 This algorithm shows the general FMM interaction kernel. It computes all cell to
cell interactions required by the 512 cells in one subgrid 25

3 FMM interaction kernel that computes all monopole-monopole interactions for a
subgrid. 27

4 FMM interaction kernel that computes all monopole-multipole (p2m) interactions
for a subgrid. 28

5 FMM interaction kernel that computes all multipole-monopole interactions for a
subgrid. 29

6 This algorithm shows a scalar version of the stencil multipole-multipole (m2m)
FMM interaction kernel. 38

7 Algorithm to launch a stencil FMM interaction kernel on a heterogeneous CPU/GPU
system. 44

11

1 Introduction

The exchange of mass between two stars is an important field of research. It can lead to a multitude
of different astrophysical phenomena depending on the exact scenario. In case of unstable mass
transfer, it can lead to a merger which in turn can cause various events. For example, the merger
between two white dwarfs alone can provoke the formation of R Coronae Borealis stars [CGH+07;
Web84]. These are rare, short-lived stars that produce a large amount of dust and are thus interesting
for studies of dust formation and evolution [Cla96]. Such a merger could also result in a type
Ia supernovae. These supernovas lead to many important discoveries, such as the accelerated
expansion of the universe [PAD+98; RFC+98]. They are also interesting points of study as the
endpoints of stellar evolution and contributors to the chemical evolution of the universe [Mag17].
Mergers of white dwarfs are also considered to be a source of gravitational waves [BB98; CT02;
Kat16].

Octo-Tiger is a code for simulating self-gravitating astrophysical fluids, primarily in the form
of interacting binary star systems. It can, and has been used, to simulate the exchange of mass
between stars. It employs adaptive mesh refinement (AMR) and uses a cell-based n-body solver,
the fast multipole method (FMM), for the computation of the gravitational field and relies on
high-level abstractions for parallelization [MKC+ew]. Unlike other similar simulations, Octo-Tiger
is capable of conserving the angular momentum down the machine precision by using a modified,
angular momentum conserving tree code for the FMM [Mar17]. Octo-Tiger and its predecessor,
Scorpio, have been used to study the merger of double white dwarf systems resulting in the
formation of R Coronae Borealis stars [MCML15]. It has also been used to test and develop the
bi-polytropic self-consistent field which is outlined in [KMF+16] and is being used to simulate
merging bi-polytropic systems [KCM+17]. Unlike other simulations, Octo-Tiger can not only scale
to thousands of CPU cores, but hundreds of thousands. In prior works, Octo-Tiger achieved a
parallel efficiency of 97% in a run using 655,520 Knights Landing cores [HLH+18]. This enables
us to run accurate and large simulations of binary star systems.

In this work, we focus on the node-level performance of Octo-Tiger. We can break it down into two
main objectives.

First, we take a look at the fast multipole method (FMM) that is used to calculate the effect of
gravity. We primarily focus on its performance on the Intel Knights Landing platform. To improve
the node-level performance, we propose a break from the traditional FMM implementation, by
introducing a stencil-based FMM approach. This way, we still have all the advantages of the FMM
algorithm, but achieve more cache and SIMD friendly code. In our prior work [PDM+18], we have
already used this stencil-based FMM algorithm and studied its performance on the Intel Knights
Landing platform. In this work, we formally introduce and compare it with the more standard FMM
implementation previously used by Octo-Tiger.

13

1 Introduction

Our second objective is to utilize heterogeneous systems containing a powerful CPU and powerful
GPUs. Considering the massive resource requirements Octo-Tiger has for simulating astrophysical
phenomena, these systems are especially interesting because they offer a high peak performance.
We show how we can use the GPUs of these systems as a coprocessor for processing parts of the
stencil-based FMM algorithm. We propose a system to offload work to the GPU, while still using
the CPU to its fullest potential, without experiencing synchronization problems.

1.1 Related Works

Researchers have been attempting to simulate the mass exchange between stars as early as 1990
[BBCP90; Kat16] using hydrodynamical equations to collect more data and to better understand the
phenomena itself, as well as the events it can lead to. However, the loss of angular momentum was
still a problem, and the desire to utilize modern hardware drove the development of more simulation
codes. A more recent example of such a simulation code is CASTRO [Kat16; KZC+16], which
uses finite difference approximations and a multigrid solver to calculate the gravitational field using
the hydrodynamic equations. It uses the Message Passing Interface (MPI) and OpenMP to run
thousands of CPU cores in parallel. While there are some optimizations in place to reduce the loss
of angular momentum, conservation is still violated [KZC+16].

In our prior work [PDM+18], we already studied the node-level performance of Octo-Tiger
Intel Knights Landing platforms using the stencil-based FMM. Here, we also measured both the
computational intensity of the most important parts of the FMM implementation, as well as the
GFLOPS on an Intel Knights Landing platform.

1.2 Structure of this Work

The remainder of this work is structured as follows.

• Chapter 2 - Octo-Tiger: Here, we describe Octo-Tiger, the equations it is based upon and its
two major components. Our main focus is the FMM component of Octo-Tiger.

• Chapter 3 - Parallelism Libraries: In this chapter, we introduce the two parallelism libraries
Octo-Tiger uses. Utilizing these two libraries, HPX and Vc, Octo-Tiger can rely solely on
high-level abstraction for parallelization and vectorization.

• Chapter 4 - Octo-Tiger on Intel Knights Landing: In this part of the work, we look into
ways to improve the node-level performance of Octo-Tiger on the Intel Knights Landing
platform. Here, we introduce the stencil-based FMM as a more cache and SIMD efficient
approach to calculate the FMM interactions within Octo-Tiger.

• Chapter 5 - Octo-Tiger’s FMM in a Heterogeneous Environment: Here, we first show
how we can execute parts of the FMM algorithm on a GPU. We further introduce a way of
using the GPU coprocessor for the FMM algorithm, that both avoids blocking and starvation
on the CPU.

14

1.2 Structure of this Work

• Chapter 6 - Results: We discuss two sets of test results. In the first tests, we compare the
performance stencil-based FMM algorithm with the more traditional FMM algorithm on
multiple platforms. The second set of tests measures the performance gain we get by using
both CPU and GPU, instead of just the CPU.

• Chapter 7 - Conclusion and Outlook: We follow up with a conclusion and look at future
work regarding Octo-Tiger.

15

2 Octo-Tiger

In this chapter, we introduce Octo-Tiger and explain how it works. We explain the equations
Octo-Tiger solves to simulate self-gravitating astrophysical fluids. To do so, we cover two major
components of Octo-Tiger: The hydrodynamics solver and the gravity solver. We briefly talk about
the the hydrodynamics solver. Afterward, we talk about the gravity solver in more detail. Since this
solver takes up a majority of the runtime of Octo-Tiger, we do not only introduce the solver itself
but also talk about the optimizations of the solver which are implemented in Octo-Tiger.

2.1 Hydrodynamics Solver

The first major component of Octo-Tiger is the hydrodynamics solver. We describe the fluid using
the Navier-Stokes Equations. We only consider the case of compressible, inviscid fluids and can
thus use the simplified version of the Navier-Stokes equation, the Euler equation. The equation for
ensuring mass conservation reads as follows:

∂

∂t
ρ + ∇ · ρv = 0 (2.1)

where ρ is the mass density and v the rotating frame fluid velocity. We further need the inertial
frame fluid velocity u. Given the angular frequency Ω and the distance from the origin x, it can
be calculated as u := v + x × Ω. The equation for impulse conservation is the aforementioned
simplified version of the original Navier-Stokes equation:

∂

∂t
s + ∇ · vs + ∇p = ρg +Ω × s (2.2)

where s is the inertial frame linear momentum density, p the gas pressure and g = −∇ϕ the
gravitational acceleration.

In addition to the mass and impulse conservation, we also need to make sure that the energy is
conserved. This inertial frame gas energy density E includes the kinetic, internal and degenerate
gas energies. To conserve this energy and avoid numerical difficulties, we use the equation
[MKC+ew].

∂

∂t

(
E +

1
2
ρϕ

)
+ ∇ · (vE + uρ + uρϕ) =

1
2

(
ϕ
∂

∂t
ϕ − ϕ

∂

∂t
ρ

)
(2.3)

Since we cannot get an analytical solution of these equations, we discretize these equations over
time and employ a numerical solver. Octo-tiger uses a finite volume solver to do this. This solver is
also modified to not only conserve linear momentum but also the angular momentum. The solver
and its modifications are described in detail in [MKC+ew].

17

2 Octo-Tiger

To get any meaningful results with Octo-Tiger, we need an inital state of the fluids for the first
timestep. The model needs to resemble a binary star system from the beginning so we have to
chose this initialization with care. Octo-Tiger uses the self concistent field technique [ET09; Hac86]
to generate an inital binary star model. These models are an equilibrium state and can be three
different models of binary star systems. The stars are either completely detached, semi-detached or
in contact. Octo-Tiger supports all three of these models [MKC+ew].

The solver additionally requires the gravitational acceleration g := ∇ϕ and the associated gravita-
tional potential ϕ. Due to this, we have to calculate the gravity in every timestep in order to solve
the hydrodynamics. To do this we need an additional solver for the gravity.

2.2 Gravity Solver

The gravitational potential of the fluids at the position x is described by the equation

ϕ[x] := −
∫
V

Gρ′

|x − x ′ |
dV ′ (2.4)

we also need the solution time differentiate for the equation 2.3

∂

∂t
ϕ[x] := −

∫
V

G ∂
∂t ρ
′

|x − x ′ |
dV ′ (2.5)

Octo-Tiger spends most of its runtime within this gravity solver, hence we take a closer look at it.
To compute the gravitational potential ϕ given by the equation 2.4, we discretize the volume V and
use an n-body based solver.

2.2.1 Discretization

We dicretize the volume V into cells. These cells contain the required variables for their position and
are located on a rotating Cartesian adaptive mesh refinement (AMR) grid. This grid is decomposed
as an octree. A node in this tree does not only manage one cell; it manages N3 cells as a subgrid.
For the rest of this work, we will use N := 8 as a parameter of the size of said subgrid, yielding a
size of 512 cells per node. The parameter N can be seen as a trade-off parameter between how finely
the grid is adapted to the problem and the computational efficiency, since it is easier to process
more data on one node instead of constantly moving to the children of a node. Each of these nodes
either has eight children or is not refined at all. In case a node is refined, its children’s subgrids
have twice the resolution of its own subgrid. Whether or not a node gets refined is decided by the
refinement criteria based on the local density ρ as outlined in [MKC+ew]. This criterion is checked
every 15 time steps of the hydrodynamics solver. In the following, we call a cell a monopole cell if
it is based on a subgrid in a leaf node. Otherwise, we call it a multipole cell.

An exemplary depiction of an octree can be seen in figure 2.1. This tree has been refined either two
or one time, depending on the location of the cells we consider.

18

2.2 Gravity Solver

Figure 2.1: Visualization of the adaptive octree from our prior work [PDM+18]

2.2.2 n-body Solver

We have to calculate the gravitational field ϕ for each cell of the octree by considering the influence
of all other cells. For n cells this would lead to a runtime complexity of O(n2) if we use a naive
approach. We could already reduce this to a complexity of O(n log n) by using the Barnes-Hut
algorithm [BH86].

However, we are using the Fast Multipole Method (FMM) as first outlined in [GR87] to approximate
the gravitational potential and achieve a runtime complexity of O(n). When computing the
gravitational field at one point, the FMM algorithm approximates the influences of distant collections
of masses with a multipole approximation [Tho80]. By using the modifications in [Deh00] we
conserve linear momentum to machine precision. Furthermore, one of Octo-Tiger’s most important
features is that it conserves angular momentum as well. To achieve this we use modifactions to the
FMM algorithm as outlined in [Mar17].

Unlike other FMM implementations, we are not considering particles which are contained in a
cell. We are just considering the density of a cell, which is stored in a singular value in each
cell ρ. Essentially, the FMM solver gets the current density at each cell as an input, and outputs
Taylor coefficients for each cell. Using these coefficients of a cell, the hydrodynamics solver can
easily compute the gravitational field ϕ at this cell location. The Taylor coefficients themselves are
computed in the FMM by considering cell to cell interactions, or approximating interactions of well
separated cells.

19

2 Octo-Tiger

Notation

In the following, we use a special notation for variables, since we are dealing with multiple
coefficients. The same notation is used in the orignal Octo-Tiger work [MKC+ew]. We demonstrate
this notation at the example of the multipole variable that we need later. A multipole Mn of the
order n and below, consists of multiple coefficients depending on n. For n = 0 it contains a single
coefficient, for n = 1 three coefficients, for n = 2 nine coefficients and for n = 3 we deal with
27 coefficients. To refer to a single element within a multipole Mn we use three helper variables
m, n, p. These form a multi-index. Each of the three helper variables is an element of the set
{0, 1, 2}. We will not predetermine the value of the helper variables, instead each of them could
be any of the three possible elements. This helps use to denote multipoles of order higher than
zero. M (1)m thus stands for three possible coefficients, which are M (1)0 , M (1)1 , and M (1)2 . M (2)mn stand
for nine coefficients and M (3)mnp for 27 coefficients. The same notation holds true for other variables
we need. For example, the Taylor coefficients of a cell q are denoted by L(0)q , L(1)q,m,L(2)q,mn and
L(3)q,mnp, containing as much coefficients as the multipoles. Other variables we need are the cell
q to cell l interactions A(0)

ql
,A(1)

ql,m
,A(2)

ql,mn
,A(3)

ql,mnp
, B(1)q,m and the gradients of the Green’s function

D(0)
ql

,D(1)
ql,m

,D(2)
ql,mn

,D(3)
ql,mnp

, all of which will be defined in the next section. We will further need

variables for the terms we require to conserve angular momentum L(1)q,m.

Basic Algorithm

The FMM implementation consists of three basic steps, which are explained in more detail after a
short overview:

Data: Density ρi at each monopole cell i
Result: Taylor coefficients L(1)q,m,L(2)q,mn, L(3)q,mnp and the angular momentum correction

L
(1)
q,m for each cell q

Step 1: Compute multipole moments M (0)
ql

,M (1)
ql,m

,M (2)
ql,mn

and M (3)
ql,mnp

at each cell q in a
bottom up octree traversal using the density at the monopole cells;

Step 2: Compute the cell to cell interactions A(0)
ql

,A(1)
ql,m

,A(2)
ql,mn

,A(3)
ql,mnp

and B(1)q,m of all cell
pairs (q, l) which are on the same level in the octree and are located close to each other;

Step 3: In a top down traversal, combine all cell to cell interactions for a cell with the
Taylor coefficients of its parent, to get the Taylor coefficient for this cell. Do the same for
the angular momentum corrections;

Algorithm 1: The basic Fast Multipole Method (FMM) algorithm.

We now take a detailed look at each of these three steps.

Step 1: Computation of multipole moments

We compute the multipole moments for each cell in a bottom-up tree traversal. At the leaf nodes
each cell l just has a zeroth level multipole, or monopole, which gets calculated by the volume of
the cell (△x)3 and its local density ρl.

20

2.2 Gravity Solver

M (0)
l
= ρl(△x)3 (2.6)

With the following equations, we calculate the multipole moments of a non-leaf node using the
multipole of its eight children

M (0) :=
8∑
l=1

M (0)
l

(2.7)

M (1)m :=
8∑
l=1

(
M (0)

l
xl,m + M (1)

l,m

)
(2.8)

M (2)mn :=
8∑
l=1

(
M (0)

l
xl,mxl,n + M (1)

l
xl,m + M (2)

l,m

)
(2.9)

M (3)mnp :=
8∑
l=1

(
M (0)

l
xl,mxl,nxl,p + M (1)

l
xl,mxl,n + M (2)

l
xl,m + M (3)

l,m

)
(2.10)

where xl is the center of the child cells expansion [MKC+ew]. After the bottom-up tree traversal we
have the multipole moments of all cells. Using these, we can compute the cell to cell interactions in
the next step.

Step 2: Computation of the Cell to Cell Interactions

Using the multipole moments we calculated in the bottom-up tree traversal, we can calculate the
cell to cell interactions for all cells q and their respective, close-by, neighbor cells l. To do this, we
must first define what qualifies as a close-by neighbor. For this we use the opening criteria:

1
|Z

f
q − Z

f
l
|
≤ Θ <

1
|Zc

q − Zc
l
|
. (2.11)

where Z f
q and Z f

l
are the coordinate centers of two cells, and ZC

q and ZC
l

are the coordinate centers
of their parent cells. For all neighboring cells which are (1) on the same level in the octree and (2)
fulfill this criteria, we calculate the cell to cell interactions A(0)

ql
,A(1)

ql,m
,A(2)

ql,mn
,A(3)

ql,mnp
and B(1)q,m.

The number of neighbors that are considered due to the opening criteria is always the same. The
computational complexity per cell is thus constant and does not depend on the total number of
cells n. Since the number of valid neighbors is always constant, we can simply store the indices
of interacting cells in an interaction list ilist. This list stores index tuples in the form of (q, l).
Each of this tuple means that cell q is directly interacting with cell l. For convenience we define
ilist(q) = {l |(q, l) ∈ ilist}, to get a list over all interaction partners of a cell q. The neighbors of a
cell can also be interpreted in the form of a discretized sphere. A visualization of that stencil can be
seen in figure 2.2.

21

2 Octo-Tiger

Figure 2.2: Visualization of discretized spherical stencil from our prior work [PDM+18]. This
stencil is implied by the opening criteria.

Given the list with interacting pairs of cells (q, l), we now need to compute the cell to cell interactions
for each of these pairs. Do do this, we first need the gradients of the Green’s function for gravitational
potential. This gets calculated using the distance between the cells.

D(0)(Rl,q) = − 1
R, (2.12)

D(1)i (Rl,q) =
Ri

R3 , (2.13)

D(2)i j (Rl,q) = −
3RiR j−δi jR

2

R5 , (2.14)

D(3)
i jk
(Rl,q) =

15RiR jRk−3(δi jRk+δ jkRi+δkiR j)R
2

R7 , (2.15)

where Rl,q := Rl − Rq is the distance vector between the two interacting cells, R := | |Rl,q | |2. If a
cell q is a monopole cell, we simply use the middle of the cell as the position Rq, otherwise we
use the center of mass, which can be calculated using its child cells. The same holds true for the
position Rl .

With both the multipoles and the coefficients Green’s function we can calculate the cell to cell
interactions A(0)

ql
,A(1)

ql,m
,A(2)

ql,mn
and A(3)

ql,mnp
.

A(0)
ql

:= M (0)
l

D(0)(Rl,q) + M (1)
l,m

D(1)m (Rl,q) + M (2)
l,mn

D(2)mn(Rl,q) + M (3)
l,mnp

D(3)mnp(Rl,q), (2.16)

A(1)
ql,m

:= M (0)
l

D(1)m (Rl,q) + M (1)
l,n

D(2)mn(Rl,q) + M (2)
l,np

D(3)mnp(Rl,q), (2.17)

A(2)
ql,mn

:= M (0)
l

D(2)mn(Rl,q) + M (1)
l,p

D(3)mnp(Rl,q), (2.18)

A(3)
ql,mnp

:= M (0)
l

D(3)mnp(Rl,q). (2.19)

22

2.2 Gravity Solver

If we calculate these coefficients this way, the linear momentum is already conserved. However, to
also conserve angular momentum we have to add a corrective term to L(1)q,m, as outlined in [Mar17].
The corrective term which which we need for the cell to cell interaction between q and l is B(1)q,m.
r ∈ {0, 1, 2} is like a m, n, and p, an additional helper variable.

B(1)
ql.m

:=
1
2

(
M (2)

l,n,pr
−

M (0)
l

M (0)q

M (2)q,n,pr

)
D
′(4)
mnpr (Rl,q) (2.20)

As shown in [MKC+ew], we calculate the coefficients D
′(4)
mnpr (R) like this

D
′(4)
mnpr (R) :=

15
(
δi jRkRl + δikRjRl + δilRjRk

)
R7 −

3
(
δi jδkl + δikδjl + δilδjk

)
R5 . (2.21)

Step 3: Computation of the Taylor Coefficients of each Cell

We introduced the cell to cell interactions for cell pairs on the same octree level that are located
close to each other acording to the opening criteria 2.11. However, to calculate the the Taylor
coefficients for a cell, we still need its interactions with the cells outside of its opening criteria.
These interactions are not calculated directly. Instead, we use the parent cells, since they interact
with other cells that are outside of the opening criteria of the respective child cells. We can add
these contributions to the Taylor coefficients by using an up-down tree traversal. Variables with C
stand for the value of the parent of the current cell. These values are already up to date, since the
Taylor coefficients of the parent cell are always processed first in this tree traversal. The root node
simply uses empty values instead the parent values.

Given all cell to cell interactions A(0)
ql

,A(1)
ql,m

,A(2)
ql,mn

,A(3)
ql,mnp

of a cell q with all same-level interaction

partners l ∈ ilist(q), as well as the Taylor coefficients of the parent cell LC,(0)
q ,LC,(1)

q,m ,LC,(2)
q,mn, LC,(3)

q,mnp

we can now calculate the Taylor coefficients of the cell itself:

L(0)q :=

(ilist(q)∑
l

A(0)
ql

)
+ LC,(0)

q − LC,(1)
q,m xm + L(C,(2)

q,mm xnxm − LC,(2)
q,mnpxx xmxp (2.22)

L(1)q,m :=

(ilist(q)∑
l

A(1)q,m

)
+ LC,(1)

q,m + L(C,(2)
q,mm xn − LC,(2)

q,mnpxx xp (2.23)

L(2)q,mn :=

(ilist(q)∑
l

A(2)q,mn

)
+ L(C,(2)

q,mm − LC,(2)
q,mnpxp (2.24)

L(3)q,mnp :=

(ilist(q)∑
l

A(3)q,mnp

)
+ LC,(2)

q,mnpxp (2.25)

Again a correction term is required to ensure angular momentum conservation. For this, we add up
the terms B(1)q,m from all cells and combine it with the corrective term of its parent LC,(1)

q.m .

L
(1)
q,m :=

(ilist(q)∑
l

B(1)q,m

)
+ L

C,(1)
q.m (2.26)

23

2 Octo-Tiger

After we have completed the up-down traversal of the octree, we have to finish all steps of the FMM
algorithm and get the Taylor coefficients LC,(0)

q ,LC,(1)
q,m ,LC,(2)

q,mn, LC,(3)
q,mnp for each monopole cell, as

well as its correcitve terms LC,(1)
q.m . These terms can be used to calculate g, ϕ and ∂

∂t ϕ within the
hydrodynamics solver [MKC+ew].

2.2.3 Introducing the FMM Interaction Kernel

Octo-Tiger does not store the cell to cell interactions A(0)
ql

,A(1)
ql,m

,A(2)
ql,mn

, A(3)
ql,mnp

, B f ,(1)
ql.m

explictly.
Instead, we can immediately sum them up directly after their calculation:

A(0)combined,q :=

(ilist(q)∑
l

A(0)
ql

)
(2.27)

A(1)combined,q,m :=

(ilist(q)∑
l

A(1)q,m

)
(2.28)

A(2)combined,q,mn
:=

(ilist(q)∑
l

A(2)q,mn

)
(2.29)

A(3)combined,q,mnp
:=

(ilist(q)∑
l

A(3)q,mnp

)
(2.30)

B(1)combined,q,m :=

(ilist(q)∑
l

B(1)q,m

)
(2.31)

Thus, we separate the summation of the interaction from the eventual computation of the Taylor
coefficients. This computation can now be written as:

L(0)q := A(0)combined,q + LC,(0)
q − LC,(1)

q,m xm + L(C,(2)
q,mm xnxm − LC,(2)

q,mnpxx xmxp (2.32)

L(1)q,m := A(1)combined,q,m + LC,(1)
q,m + L(C,(2)

q,mm xn − LC,(2)
q,mnpxx xp (2.33)

L(2)q,mn := A(2)combined,q,mn
+ L(C,(2)

q,mm − LC,(2)
q,mnpxp (2.34)

L(3)q,mnp := A(3)combined,q,mnp
+ LC,(2)

q,mnpxp (2.35)

L
f ,(1)
q,m := B(1)combined,q,m + L

C,(1)
q.m (2.36)

(2.37)

Now that we separated the summation of the cell to cell interactions into the equations we can
describe the algorithm that computes them. Since cells in Octo-Tiger are always managed in groups
of 512 cells per octree node, this algorithm does not only describe the summation for one cell, but
for a whole subgrid of 512 cells. Thus we must have an interaction list for each node of the octree.
These lists contains the interactions of all 512 cells with all cells either from the same subgrid, or
from one of the neighboring subgrids. Again, the opening criteria 2.11 decides whether two cells
directly interact and are thus part of the list.

24

2.3 Optimized Gravity Solver

Using these node-specific interaction lists we can formulate the algorithm 2. We call this algorithm
the FMM interaction kernel. Since it is responsible for most of the computations within Octo-Tiger,
it is an apt target for optimizations.

Data: All multipoles and center of masses of the cells within the subgrid and its neighbor
subgrids, as well ilist of this node

Result: All combined cell to cell interactions for each cell within the subgrid
while we have not processed all elements of the interaction list ilist do

Step 1: Load next cell pair (q, l) from interaction list ilist;
Step 2: Load multipole moments and the center of masses for these two cells;
Step 3: Compute Green‘s gradients using the center of masses with equation 2.12;
Step 4: Compute cell to cell interaction results A(0)

ql
,A(1)

ql,m
,A(2)

ql,mn
,A(3)

ql,mnp
between l

and q using the equations 2.16-2.19;
Step 5: Add cell to cell interactions to combined result for this cell;
Step 6: Compute cell to cell interaction corrective term B(1)q,m using the equation 2.20;
Step 7: Add to corrective term B(1)q,m to the combined corrective term.

end
Algorithm 2: This algorithm shows the general FMM interaction kernel. It computes all cell to
cell interactions required by the 512 cells in one subgrid

2.3 Optimized Gravity Solver

We have to compute the solution for the gravitational potential for every time step in the hydrody-
namics solver. The computation of the gravity thus takes up the majority of Octo-Tiger’s runtime.
Especially the computation of the cell to cell interactions in step two is very time-consuming. In
this step, we have to compute the interactions of every cell with its close-by neighbors. In praxis,
this means we have to compute about a thousand cell to cell interactions for each singular cell. This
is done for all cells by computing the FMM interaction kernel in algorithm 2 for each node in the
octree.

Octo-Tiger employs multiple optimizations to lessen the runtime of this step. (1) We reduce the
number of coefficients per cell by exploiting symmetry. (2) We adapt the equations of the cell to
cell interaction to the type of cells considered. This leads to four specialised FMM kernels. (3)
In some steps we can avoid computing the angular corrections. Using this, we can create three
additional kernels which skip this step.

In this section, we will look at each of these optimizations and conclude with an overview of these
newly introduced FMM kernels.

2.3.1 Using less Coefficients

A first optimization for the FMM interaction kernel is the reduction of required coefficients. As
we have mentioned earlier, each cell q holds multiple multipole coefficients as well as multiple
Taylor coefficients depending on the order. For the zeroth order M (0)q there is one coefficient, three
coefficients for the first order M (1)m , nine for the second M (2)mn and lastly 27 coefficients for the third

25

2 Octo-Tiger

order M (3)mnp. Overall this means we have 40 coefficients for the multipole moments of one cell alone.
The same holds true for the Taylor coefficients L and the cell to cell interactions A. Exploiting
symmetry, we can reduce the number of required coefficients for each of them from 40 to 20, more
specifically from the zeroth to the third order we need one, three, six, and ten elements. This reduces
the number of computations and the memory requirements.

2.3.2 Use specialized FMM interaction kernels depending on the Cell Type

The equations 2.16 to 2.19 can be simplified depending on the nature of the interacting cells.
Since nodes on the same level in the octree can be differently refined, there are four possible
interaction types: Two multipole cells interact (m2m interaction), two non-refined monopole cells
interact (p2p interaction) and the mixed interactions with monopole-multipole (p2m) pairs and
multipole-monopole (m2p) pairs.

There are two possible ways to optimize the equations depending on these types: We can reduce the
number of multipole moments to consider and thus the number of computations since only M (0) is
non-zero for monopole cells. For direct interactions in leaf nodes (p2p or p2m) Octo-Tiger only
calculates Taylor coefficients of the zeroth and first order as outlined in [Deh02].

Using this we can introduce three new kernels. In order to maintain a simple notation, we keep it
similar to the notation of the general FMM interaction kernel in algorithm 2.

To define these new, simpler kernels, we need to split the interaction list into four interaction lists
depending on the type of the interacting cells:

• ilistp2p containing the cell pairs (q, l), where both cells are monopole cells

• ilistp2m containing the cell pairs (q, l), where q is a monopole cell, but l is a multipole cell

• ilistm2p where q is a multipole cell and l is a monopole cell

• ilistm2m where all cells are multipole cells

Monopole-Monopole (p2p) Specialization

For interactions between monopole cells, we can reduce the number of multipole moments to
consider, we only need to compute the Taylor coefficients of the zeroth and first order. With these
simplifications, we get the following equations to calculate the Taylor coefficients for a monopole
cell q which is interacting with other monopoles:

A(0)p2p,ql := M (0)
l

D(0)(Rl,q), (2.38)

A(1)p2p,ql,m := M (0)
l

D(1)m (Rl,q) (2.39)

We need to compute only D(0) and D(1)m instead of all gradients of the Green’s function. Furthermore,
we can also drop the equation 2.20 in this case, since the term would be zero for interactions between
monopoles.

26

2.3 Optimized Gravity Solver

We can thus formulate a p2p FMM interaction kernel 3 that requires less computations than the
original FMM kernel in algorithm 2.

Data: All multipoles moments M (0) of the cells within the subgrid and its neighbor
subgrids, as well as the ilistp2p of this node

Result: All monopole monopole interactions are added to the combined interaction
variable

while we have not processed all elements of the interaction list ilistp2p do
Step 1: Load next cell pair (q, l) from interaction list ilistp2p;
Step 2: Load multipole moments M (0) for these two cells;
Step 3: Compute Green‘s gradients D(0) and D(1)m ;
Step 4: Compute cell to cell interaction results A(0)

ql
,A(1)

ql,m
between l and q using the

equations 2.38-2.39;
Step 5: Add cell to cell interactions to combined result for this cell;

end
Algorithm 3: FMM interaction kernel that computes all monopole-monopole interactions for a
subgrid.

Monopole-Multipole (p2m) Specialization

For monopole-multipole interactions we have to consider all multipole moments, since the interaction
partners l of the monopole q are multipoles. We still benefit from the fact that q is a monopole by
having to compute fewer Taylor coefficients. Thus, the mixed interactions between a monopole q
and its neighboring multipoles l can be written as:

A(0)p2m,ql
:= M (0)

l
D(0)(Rl,q) + M (1)

l,m
D(1)m (Rl,q) + M (2)

l,mn
D(2)mn(Rl,q) + M (3)

l,mnp
D(3)mnp(Rl,q)(2.40)

A(1)p2m,ql,m
:= M (0)

l
D(1)m (Rl,q) + M (1)

l,n
D(2)mn(Rl,q) + M (2)

l,np
D(3)mnp(Rl,q) (2.41)

(2.42)

Unlike the with the p2p specialization, we still have to compute the angular corrections for this case.
However, since q is a monopole cell, and M (2)

l,pr
is 0, and we can thus simplify the equation to:

B(1)p2m,ql.m
:=

1
2

M (2)
l,n,pr

D
′(4)
mnpr (Rl,q) (2.43)

27

2 Octo-Tiger

Unfortunately, we still have to compute all of the D coefficients. Using these new equations, we can
rewrite the general FMM kernel from algorithm 2 to save some computations. This yields the p2m
FMM interaction kernel, as shown in algorithm 4.

Data: All multipoles and center of masses of the cells within the subgrid and its neighbor
subgrids, as well ilistp2m of this node

Result: All combined cell to cell interactions for each cell within the subgrid
while we have not processed all elements of the interaction list ilistp2m do

Step 1: Load next cell pair (q, l) from interaction list ilistp2m;
Step 2: Load multipole moments and the center of masses for these two cells;
Step 3: Compute Green’s gradients using the center of masses with equation 2.12;
Step 4: Compute cell to cell interaction results A(0)p2m,ql

,A(1)p2m,ql,m
between l and q

using the equations 2.40-2.41;
Step 5: Add cell to cell interactions to combined result for this cell;
Step 6: Compute cell to cell interaction corrective term B(1)p2m,q,m

using the equation
2.43;

Step 7: Add to corrective term B(1)p2m,q,m
to the combined corrective term.

end
Algorithm 4: FMM interaction kernel that computes all monopole-multipole (p2m) interactions
for a subgrid.

Multipole-Monopole (m2p) Specialization

In the case of multipole-monopole interactions, we have to compute all Taylor coefficients, but can
ignore all but the zeroth multipole moment (the monopole).

A(0)m2p,q := M (0)
l

D(0)(Rl,q), (2.44)

A(1)m2p,q,m := M (0)
l

D(1)m (Rl,q), (2.45)

A(2)m2p,q,mn
:= M (0)

l
D(2)mn(Rl,q), (2.46)

A(3)m2p,q,mnp
:= M (0)

l
D(3)mnp(Rl,q) (2.47)

Again, we can also simplify the equation for the corrective term B(1)m2p,ql.m, since one of the cells is
a monopole.

B(1)m2p,ql.m := 1
2

(
−

M
(0)
l

M
(0)
q

M (2)q,n,pr

)
D
′(4)
mnpr (Rl,q) (2.48)

28

2.3 Optimized Gravity Solver

Using these new equations, we can write the multipole-monopole FMM interaction kernel, as seen
in algorithm 5.

Data: All multipoles and center of masses of the cells within the subgrid and its neighbor
subgrids, as well ilistmp2 of this node

Result: All combined cell to cell interactions for each cell within the subgrid
while we have not processed all elements of the interaction list ilistmp2 do

Step 1: Load next cell pair (q, l) from interaction list ilistmp2;
Step 2: Load multipole moments and the center of masses for these two cells;
Step 3: Compute Green’s gradients using the center of masses with equation 2.12;
Step 4: Compute cell to cell interaction results

A(0)m2p,ql,A
(1)
m2p,ql,m,A(2)m2p,ql,mn

,A(3)m2p,ql,mnp
between l and q using the equations

2.44-2.47;
Step 5: Add cell to cell interactions to combined result for this cell;
Step 6: Compute cell to cell interaction corrective term B(1)q,m using the equation 2.48;
Step 7: Add to corrective term B(1)m2p,q,m to the combined corrective term.

end
Algorithm 5: FMM interaction kernel that computes all multipole-monopole interactions for a
subgrid.

Multipole-Multipole (m2m) Specialization

Unfortunately, we cannot reduce the amount of computations that are required to calculate the cell to
cell interactions between two multipole cells. In this case, we have to compute all Taylor coefficients
of the cell q, using all multipole moments of both cells. Thus the m2m FMM interaction kernel is
the same as the general FMM kernel, seen in Algorithmus 2.

2.3.3 Adding Kernels without Angular Correction

In some steps of the gravity solver, Octo-Tiger requires the Taylor coefficients for each cell, but
not the angular corrections. In these steps, we can skip the computation of B. The FMM kernel
presents the inner-most loop of computation, thus we should not skip the computation by introducing
conditional code within this critical part. Instead, we create new kernels, which exclude the steps to
calculate B and to add it to the overall corrections. This yields another FMM kernel for each of
the already introduced kernels, except for the p2p FMM kernel since it does not compute angular
corrections. We call these new kernels that skip the computation of the angular corrections non-rho
kernels.

For the p2m FMM interaction kernel, we add the p2m FMM non-rho kernel. Accordingly, we add
the m2p and the m2m non-rho FMM kernels. Each of these kernels essentially works in the same
way as the respective kernel that computes the angular corrections, where just the steps six and
seven of the algorithm are omitted.

29

2 Octo-Tiger

Kernel Algorithm
p2p FMM interaction kernel Algorithm 3
p2m FMM interaction kernel Algorithm 4
m2p FMM interaction kernel Algorithm 5
m2m FMM interaction kernel Algorithm 2
p2m non-rho FMM interaction kernel Algorithm 4, skipping step 6 and 7
m2p non-rho FMM interaction kernel Algorithm 5, skipping step 6 and 7
m2m non-rho FMM interaction kernel Algorithm 2, skipping step 6 and 7

Table 2.1: Overview over all interaction list FMM kernels and their respective, scalar algorithm.

2.3.4 Overview over the FMM Interaction Kernels

Using all of specializations we now have not one, but seven FMM interaction kernels. These include
the four specializations depending on the cell types, as well as three specializations which skip the
computation of the corrective term for the angular moment.

The seven kernels represent the most compute-intensive parts of Octo-Tiger. An overview over
them is given in table 2.1.

30

3 Parallelism Libraries

Octo-Tiger utilizes two libraries to achieve distributed, local and data-level parallelism. It uses
HPX to for the former two types of parallelism, and Vc for vectorization to achieve data-level
parallelism.

3.1 HPX - A High Level Runtime Framework for Local and Distributed
Task Parallelism

To obtain meaningful results using Octo-Tiger we have to run large scenarios. Therefore Octo-Tiger
not only needs to be able to use all resources on a single compute node, it needs to run distributed
across many nodes to be able to finish the computation in a reasonable time.

While machines are readily available, developing applications that scale to a lot of nodes while
preserving parallel efficiency is a problem that has occupied both science and industry. In [KHA+14],
the problems which are limiting us are called the SLOW factors: Starvation, Latencies, Overheads
and Waiting. Starvation will occur when there is just not enough parallel work to keep all resources
busy. An example for this would be global barriers since there are usually threads that finish sooner
and have to wait. Latencies arise when we have to wait for communication or remote resources.
Managing a high number of different compute nodes also introduces overheads for the management
of the parallel actions. Lastly, if we oversubscribe a shared resource, we have to wait for contention
resolution.

In order to solve these issues, Octo-Tiger has been developed using High Performance ParalleX,
or HPX [HDB+17; HKD+16; KHA+14]. HPX is an open source C++ runtime system which
implements the ParalleX computation model [GSS+07; KBS09] for parallel and distributed
applications in order to tackle the aforementioned problems. It uses an asynchronous many-task
runtime system (AMT) allowing developers to convey complex data flow execution trees with up to
billions of tasks, which are being scheduled when their dependencies are met.

HPX has already been successfully used with good scaling results on heterogeneous supercomputers
[HKSF13], it performs well against more traditional Frameworks as MPI or OpenMP [HKD+16;
HKI13] and Octo-Tiger has been shown to achieve a parallel efficiency of 97% using 655,520
Knight Landing cores [HLH+18]. Other applications that use HPX include the LibGeoDecomp
N-Body Code or Storm Surge Forecasting [HDB+17]. Furthermore, HPX includes GPU support,
albeit it is still experimental [HDB+17; WKH15].

HPX is designed around multiple overarching principles which we will take advantage of for
executing the FMM kernels of Octo-Tiger to the GPU, while still being able to work on other tasks
on the CPU. Therefore we will take a short look at these principles. A more thorough description is
to be found at [KHA+14].

31

3 Parallelism Libraries

One of these principles concerns latencies. HPX focuses on hiding latencies instead of avoiding
them. It is impossible to completely hide latencies, as they arise for a multitude of tasks, for example,
the communication with a GPU or over a network. We should use the idle time these latencies
introduce to do other useful computations. We effectively want to hide the latency by switching
the thread to another context where it can continue to work. To achieve this HPX supports very
light-weight threads with short context switching time.

Another principle is the avoidance of global barriers. Each task should be able to continue as soon
as its preconditions are met, using a constraint-based synchronization. This type of computing
was already described in [Den74]. Instead of relying on barriers to synchronize the control flow
between several threads, in HPX an operation can proceed as soon as its preconditions are met.
Using Futurization, it is possible to express dataflow execution trees in HPX with up to billions of
different tasks. These tasks are only scheduled when their dependencies are satisfied, and will then
be executed by a worker thread. Through the usage of thread local variables, it is also possible to
have memory associated with a worker thread, instead of the tasks. This memory can be useful for
reusing variables in between HPX tasks.

Other design principles of HPX concern the distributed case where we have to deal with a large
number of separated nodes. While these are important to Octo-Tiger at large, for this work we will
focus on the node level performance itself and thus only mention these principles shortly. The API
of HPX is the same for local and distributed operations, thus enabling developers to maintain a
high-level view of the application. HPX takes care of the load balancing by the use of an active
global address space (AGAS) to enable object migration. It prefers moving work to the data instead
of the other way around since operations can usually be encoded in fewer bytes than the data they are
operating upon. For the communication between nodes, message driving computation is preferred
over message passing.

3.2 Vc - A High Level Library for Data-Level Parallelism

To use the available hardware to its fullest potential, we have to utilize data-level parallelism. Most
CPUs support SIMD instructions (single instruction, multiple data) to apply an operation to multiple
data values at once. However, using SIMD instructions and registers requires developers to either
trust the auto-vectorization of the compiler or to use the special instructions. Both ways have
disadvantages.

As shown in [KL12], compilers cannot simply auto-vectorize purely scalar code. While all major
C++ compilers can auto-vectorize loops, the success of these automatic vectorizations depends on
specific loop layouts, employed data structures and the dependencies between data accesses. The
speed-ups obtained are therefore dependent on the compiler and usually much smaller than what we
would get by explicit vectorization [PCM+16]. Another disadvantage is that even small changes to
the scalar code might break auto-vectorization and cause slowdowns.

To consistently and adequately utilize SIMD capabilities we have to add explicit vectorization to
our applications. A usual way of doing this is using the AVX Intrinsics instructions. However, the
explicit use of these instructions comes with its own set of problems: SIMD intrinsic operations are
more verbose than their scalar counterparts and use prefix notation. This verbosity makes it harder
to port scalar code to intrinsic instructions because we have to replace every instruction. Even

32

3.2 Vc - A High Level Library for Data-Level Parallelism

worse, the code is not portable to other SIMD architectures. With the introduction of AVX512,
we would have to manually convert all the instructions to the new register lengths and instruction
names.

The Vc library [KL12; Kre+15] aims to provide a link between both solutions, by easing explicit
vectorization of C++ code. The data parallelism is added with the type system, with Vc types
explicitly stating that operations will operate on multiple values.

Furthermore, Vc can be compiled for multiple SIMD instructions sets: AVX, AVX2, AVX-512,
SSE4.2 or just for plain scalar code. To port the code we just have to compile for the target
architecture without changing the code itself. Operations in Vc are written similarly to scalar
operations. This not only makes it a bit easier to write said Vc code, but it also allows us to write
template functions which can be instanced as a vectorized version or a scalar version at compile
time. We can use this feature to call the same function template on the GPU as on the CPU. We use
the vectorized instance of the function on the CPU to use its SIMD capabilities, and can use the
scalar instance on the GPU.

Alternative libraries to Vc are Boost.SIMD [EFGL14], or the vector classes of Agner Fog [Fog13].
A more comprehensive overview over multiple SIMD libraries, including Vc, and a comparison
between them can be found in [PCM+16].

33

4 Octo-Tiger on Intel Knights Landing

The Intel Knights Landing (KNL) processor is a manycore processor that provides a similar
double-precision as a modern GPU [Sod15]. It achieves this performance by supporting AVX512
instructions and containing up to 72 cores. Unlike a GPU it still has the advantage of being a
processor, which simplifies programming. For example, we can still run programs which are
compiled for other CPUs, and the caches are larger than the ones on a typical GPU. However, the
cores of the Knights Landing Processor run a lower clock rate than the ones of a standard processor.
Also, while the caches are larger than the one on a GPU, they are still smaller than the caches
of other processors. These two attributes make the Knights Landing processor more punishing
to scalar bottlenecks, and cache inefficient code. While these attributes are undesirable from a
practical standpoint, they are also emphasizing parts of an application that need to be fixed. While
these fixes usually yield the most significant benefit on a KNL processor, they are also speeding up
applications on other processors [BCD+16].

In prior work, Octo-Tiger has already been ported to the KNL platform and has successfully been run
on 655,520 Knights Landing cores in parallel. In this work, we focus on the node-level performance
of Octo-Tiger. We try to improve it by optimizing the most compute intensive parts of Octo-Tiger,
the computation of the cell to cell interactions in the Fast Multipole Method. Our goal is to achieve
a more cache and SIMD friendly FMM algorithm.

To do this, we first take a look how the seven FMM interaction kernels of Octo-Tiger are vectorized.
An overview of these kernels and their scalar algorithm can be found in table 2.1. Afterward, we
present an alternative implementation that no longer relies on an interaction list. Instead, it uses a
stencil-based approach.

4.1 Vectorized FMM Interaction Kernels Using an Interaction List

During an initial profiler run for a small scenario using a Haswell processor, we find that Octo-Tiger
spends 67.5% of the runtime calculating the FMM cell to cell interactions with the FMM interaction
kernels.

Essentially all the FMM kernels of table 2.1 follow the same pattern. (1) We find a pair of interacting
cells using the interaction list. (2) We load the values for the 20 multipole coefficients and the center
of masses for those two cells (3) We calculate the cell to cell interactions using an implementation
of the equations 2.16 - 2.19 or one of the specializations. (4) We add the result to the combined
interactions for the two cells.

However, vectorizing the algorithm is challenging. We want to process multiple pairs of interacting
cells at once. Using AVX512, we can handle eight pairs at the same time if we load the values into
vector variables of width eight. During step (1) we load not only one pair from the interaction list,

35

4 Octo-Tiger on Intel Knights Landing

but eight pairs. In step (2) we now have to gather the coefficients into vector variables. Instead of
having a variable for each of the 20 multipole coefficients of a cell, we now have vector variables
with eight multipole coefficients, one for each cell. Using Vc, we can write the code for the
calculation of the Taylor coefficients in step (3) as we would write it for a scalar code. However,
the result of these computations is another vector variable. To add the results back to the Taylor
coefficients of the cells in step (4), we need to scatter the vector variable back onto multiple scalar
Taylor coefficients.

The indirect loading of the interaction partner with the interaction list and the subsequent gathering
of the coefficients in the vector registers is a considerable performance hit. While gathering the
scalar coefficients into the vector register, we have to potentially touch many different cachelines.
These cachelines are not getting fully used, meaning we load a lot of data we do not actually need.
In the worst case, we load eight different cachelines, each 64 Bytes wide, yet do not use more than
the one value we wanted to load per cacheline. In this case, we would load 512 Bytes but only use
64. These issues offset the performance gain that we could theoretically get by using AVX512
instead of AVX2.

4.2 Vectorized FMM Interaction Kernels using a Stencil-based
Approach

To improve the node level performance we would like to have a more linear memory access pattern.
We want to avoid these explicit gather steps and fully use the cached data.

We can achieve this by moving to a different data structure. In the initial version of Octo-Tiger,
all of the coefficients and results are stored in an Array of Structs (AoS) data structure. That is
why we need to gather all of the coefficients with scalar operations first since for each cell all 20
multipole coefficients are consecutive in memory. We need to have the first coefficient, of all eight
cells consecutive in memory in order to load them with a single instruction. The same needs to
hold true for the second coefficient and so on. Effectively, instead of an AoS data structure, we need
a Struct of Array (SoA) data structure. Within the SoA data structure, all of the coefficients are
ordered by their component index first, and the cell index is less important. Thus, we could load
eight coefficients without explicitly having to gather them. This only works if the cells are in the
right order. If we want to load the coefficients for eight pairs of the interaction list, it is unlikely that
the coefficients for these exact eight interaction pairs are consecutive. So we still would have to
gather the right cells.

We can solve this by replacing the interaction list with a stencil-based approach. We first introduced
this approach for Octo-Tiger in our prior work [PDM+18]. The opening criteria 2.11 implies a
stencil around each cell, which includes all cells it directly interacts with. This stencil always has
the same size. Instead of loading eight interaction pairs from the interaction list to make use of the
vectorization, we now can process this stencil for eight cells. If these eight cells are in order, the
interaction partners indicated by the stencil will be, too.

By combining the SoA data structure with this stencil-based approach of identifying interaction
partners, we can completely remove the gather and scatter steps. We also eliminated the indirect
addressing the interaction list forced us to use. We can also remove the memory intensive interaction
list itself. For each node in the octree, we process this stencil for 512 cells. This allows us to scale

36

4.3 Implementation of the Stencil FMM Interaction Kernels

this approach to handle more than eight interaction pairs simultaneously. Given enough parallel
capabilities, we can process the stencil for all 512 elements, and the data we load to this will be in
order.

4.3 Implementation of the Stencil FMM Interaction Kernels

Our goal is to create new high-performance stencil FMM interaction kernels to replace the interaction
list FMM kernels. These new stencil kernels are using the SoA data structure, instead of the original
AoS data structure that the rest of Octo-Tiger uses. Therefore, before we calculate the FMM cell
to cell interactions using the kernels, we have to convert the data from the AoS to the SoA data
structure. We do this once per cell before we start calculating the FMM cell to cell interactions. The
interaction list FMM kernels are doing something similar when they are gathering the coefficients
into the vector registers, however, they do this once per cell to cell interaction instead.

On each octree node, the SoA data structure holds all required coefficients in a three-dimensional
grid. For example, these coefficients include the multipole moments M (0)q , M (1)q,m,M (2)q,mn and M (3)q,mnp

for each cell q. This does not only include the coefficients of all 512 cells within the subgrid of the
octree node, but also the ones of the neighboring octree nodes on the same refinement level, since
we are interacting with their cells as well. In the SoA conversion step on each node, we have to fill
a grid the size of 24 · 24 · 24 = 13824 cells. The middle part of this grid consists of the 8 · 8 · 8
subgrid of the current octree node. There are two additional cases to consider while filling the SoA
data structure of a node. First, a neighbor could be of the wrong type. For example, monopole cells
only contain the multipole moment of the zeroth order M (0)q , and none of any higher order. Second,
a neighbor on the same refinement level could simply not exist. In both cases, we fill the SoA data
structure with zeros at these positions. This would yield the right result because the cell to cell
interactions would also result in zeros. However, to avoid these useless computations we employ an
early exit strategy to skip the cell to cell interactions in these cases.

Once the SoA data structures are ready on an octree node, calculating the cell to cell interactions
is very similar to the interaction list FMM kernels method. We are still implementing the same
equations, however the difference is how we identify interacting cells and how we load the data.

For each cell q within the 83 subgrid of a node, we interact with all other cells on the 243 sized SoA
coefficient grid that are in range of the stencil. The stencil itself is defined by the opening criteria
equation 2.11. A picture of this stencil for Octo-Tiger’s default parameters can be seen in figure 2.2.
For example, a scalar version of the stencil FMM kernel for multipole-multipole interaction can be
seen in algorithm 6. The stencil-based equivalent to the interaction list kernel is seen in algorithm
2.

We can now easily vectorize this stencil FMM kernel for AVX512. Again, we want to process eight
cell to cell interactions, instead of just a one. To accomplish this, we iterate not over one cell in the
first loop, but over eight cells. This means each variable that previously only held one coefficient
must now hold eight coefficients. We accomplish this by using Vc variables. If the eight cells we
loaded are aligned in memory, then their respective eight interacting cells l in the inner loop will
be as well. Loading a coefficient for the first of the eight interacting cells will give us the same
coefficient of the other cells within the cacheline since they are consecutive in memory, because of

37

4 Octo-Tiger on Intel Knights Landing

the SoA data structure. This means we only have to load a single cacheline if we want to load a
coefficient of all eight cells. Instead of the eight cachelines, we require using the interaction list
FMM kernel.

Data: All multipoles and center of masses of the cells within the subgrid and its neighbor
subgrids in the form of SoA data structures

Result: All combined cell to cell interactions for each cell within the subgrid in the form
of a SoA data structure

for cell q← 0 to 512 by 1 do
Step 0: Load SoA multipole moments and the center of masses for cell q;
forall cells l within the stencil of q do

Step 1: Load SoA multipole moments and the center of masses for cell l;
Step 2: Compute Green’s gradients using the center of masses with equation 2.12;
Step 3: Compute cell to cell interaction results A(0)

ql
,A(1)

ql,m
,A(2)

ql,mn
,A(3)

ql,mnp
between

l and q using the equations 2.16-2.19;
Step 4: Add cell to cell interactions to combined result for this cell;
Step 5: Compute cell to cell interaction corrective term B(1)q,m using the equation
2.20;

Step 6: Add to corrective term B(1)q,m to the combined corrective term.
end

end
Algorithm 6: This algorithm shows a scalar version of the stencil multipole-multipole (m2m)
FMM interaction kernel.

4.4 Further optimizations

To further improve the runtime of the FMM implementation on all platforms we included various
other optimizations:

(1) We combined the multipole-multipole kernel with the multipole-monopole kernel. By structuring
the input data the right way and doing a couple of masking operations within the kernel itself, we
ensure the right result. This improved the cache usage since both kernels essentially require almost
the same data. Staying true to our notation of the kernels, we are calling this kernel the m2mp
kernel, since it computes interactions for both multipole and monopole partners. Since there is a
version with the angular corrections and one without, it brings our overall number of stencil FMM
kernels down to five.

(2) We removed the explicit calculation of all the values for the gradients of the Green’s function
2.12. We sorted the calculations of the m2m kernel in a way that we only need one of the coefficients
at a time and thus have no need to store them all. This reduced the usage of CPU registers and sped
up the execution of this kernel.

(3) We moved all SoA data structures into thread local memory. Instead of allocating this memory
per subgrid, we now allocate it once per HPX worker thread. This means we have one SoA subgrid
with all the multipole moments and the center of masses per worker thread. This subgrid will

38

4.5 Overview over the Stencil FMM Interaction Kernels

be filled by the worker thread with the SoA conversions with the data of the node it is currently
working on. This optimization brought us back to nearly identical memory requirements as the
initial code, while still avoiding costly memory allocations.

We also put other, more conventional, optimizations into place, like loop unrolling and memory
blocking. However, the three optimizations above are more specific to Octo-Tiger and thus important
to know for other people working with the code.

4.5 Overview over the Stencil FMM Interaction Kernels

We initially created a stencil-based FMM interaction kernel, for each of the seven interaction list
FMM interaction kernels. However, due to the merger between the m2m and the m2p kernel we end
up with five stencil FMM interaction kernels:

Stencil Kernel
p2p stencil FMM interaction kernel
p2m stencil FMM interaction kernel
m2mp stencil FMM interaction kernel
p2m non-rho stencil FMM interaction kernel
m2mp non-rho stencil FMM interaction kernel

39

5 Octo-Tiger’s FMM in a Heterogeneous
Environment

Supercomputers that include one or more GPUs per compute node in addition to the standard
processor, have become more commonplace recently. This can be seen in the top 500 list of
supercomputers. An example for such a supercomputer would be Piz Daint, which includes
an NVIDIA Tesla P100 GPU and a Xeon E5-2690v3 CPU on each compute node. In such
heterogeneous environments, Octo-Tiger’s performance can be further improved by utilizing the
GPU. More specifically we want to use the GPU as a coprocessor for computing some of the stencil
FMM interaction kernels. We are targeting NVIDIA GPUs and are therefore using Cuda to use
their devices.

In this chapter, we first explain a basic version of how to launch the FMM kernels on a NVIDIA
GPU. Afterward, we discuss the necessary changes to make Octo-Tiger use both the CPU and the
GPU at the same time.

5.1 Basic Version

To make an FMM kernel executable on a Cuda device, we only need to slightly modify the
original scalar stencil FMM kernel. We already saw an exemplary scalar version, which is the
multipole-multipole stencil FMM kernel in algorithm 6. Here we iterated over all 512 cells of the
octree node, calculating all cell to cell interactions within the stencil for each. Instead of iterating
over the 512 cells, we now launch 512 threads on the Cuda device for one kernel launch. Each of
these threads takes care of all cell to cell interactions of its respective cell. However, 512 threads are
not enough to fully use a GPU. We need to be able to execute multiple FMM kernels concurrently
on the GPU. Cuda GPUs are capable of executing a number of kernels concurrently. How many
depends on the GPU itself, but it usually varies between 16 and 128 for modern NVIDIA graphic
cards. To do this, we need to use Cuda streams. We can launch each FMM kernel execution in a
Cuda stream and it will be executed on the Cuda device. If other FMM kernels are launched in
different streams, they will be executed in parallel on the GPU if the device has the capability to do
so. Otherwise, the kernel will be executed as soon as the resources on the GPU are available. We
can create a Cuda stream for each octree node, in which we launch the FMM kernel for this node.

However, to launch an FMM kernel on the GPU involves more steps than doing so on the CPU. To
launch a stencil FMM kernel on the CPU, we only have to do two steps. (1) Convert the AoS data of
the octree node and its neighbors into a SoA grid. (2) Launch stencil FMM kernel on the CPU.

On the GPU even the most basic version requires more steps. To launch an FMM kernel on a GPU
we have to: (1) Again, convert the AoS input data into the SoA grid. (2) Allocate all required
buffers for the kernel input and output data on the Cuda device. (3) Move the SoA input data into

41

5 Octo-Tiger’s FMM in a Heterogeneous Environment

the respective Cuda device buffers. (4) Launch the FMM kernel on the Cuda device and wait for it
to finish. (5) Move the resulting data back from the device buffers to the CPU host-side buffers. (6)
Deallocate the the device buffers.

If we are doing this on each octree node, we fully outsourced the computation of the stencil FMM
interaction kernels to the GPU. Since we launch each FMM kernel in a different stream, we will
fill up the GPU with multiple concurrent kernel executions, each consisting of 512 threads itself.
However, this way of launching the FMM kernels on the GPU comes with two major disadvantages.
(1) We continuously block the CPU by waiting on either the copying or the kernel execution to
finish. For this timeframe, the HPX worker thread just waits for the GPU to finish its operation
and cannot do anything else. (2) Even small Octo-Tiger scenarios require more than 16 GB of
memory, making it impossible to store the complete scenario in the GPU memory. Instead, we have
to allocate and deallocate the device buffers we need for each kernel launch.

These two disadvantages result in a considerable overhead for launching FMM kernels on the
GPU, and prevent the CPU from doing useful work at the same time. To truly use the GPU as a
coprocessor to execute some of the FMM kernels, while leaving the CPU free to do other work, we
have to solve the problems causing these two disadvantages.

5.2 Hetereogenous Version

We will show how we can solve the problems mentioned in the previous section. These problems
include: (1) Constant allocation and deallocation of Cuda device buffers. (2) Host CPU has to wait
for memory copies to and from the device to finish. (3) Host CPU cannot do any other work while
waiting for the kernel execution on the GPU to finish.

The first problem we need to solve is the allocation and deallocation of the Cuda device buffers. We
can do this by moving the host-side handles of the device buffers into thread local memory. Instead
of allocating the device buffers once per kernel execution, we now only allocate them once per HPX
worker thread. This means we can persistently reuse the device buffers for each worker thread, and
consequently only have to allocate them once during the startup of Octo-Tiger. We call the thread
local struct containing the handles for the device buffers the kernel device enviroment from now
on. Similarly, instead of having one Cuda stream per octree node, it is sufficient to have one thread
local stream per HPX worker thread.

The second problem to solve is how to copy data to and from the Cuda device without blocking the
CPU. Cuda supports asynchronous memory operations, doing precisely this. Using these, we can
directly queue a memory copy in a Cuda stream, without blocking the host CPU. Since operations
in a Cuda stream are guaranteed to be in order, we do not need to worry when this memory copy is
going to finish. If we queue the launch of the kernel after the memory copy in the same stream, the
copy operation will be finished before the kernel execution starts on the device. However, there is
one requirement we have to fulfill to use these asynchronous copies. The host side memory of this
copy must be non-pageable memory. This memory is also often called pinned memory. Since the
allocation of such memory is more expensive than the allocation of normal memory, we employ the
same trick as we do regarding the handles of Cuda device buffers. We allocate the pinned memory
only once per HPX worker thread, again using thread local memory. We call the struct containing
all SoA thread local memory of the host side the kernel staging area from now on. Since we

42

5.2 Hetereogenous Version

need to convert the AoS input data into an SoA grid anyway, we simply use the pinned SoA grids in
the kernel staging area as the target for these conversions. Therefore we avoid costly allocations,
while still supporting asynchronous memory copy to and from the Cuda device.

The third problem is the most complicated one to solve. So far, the CPU still has to wait for the
completion of the FMM kernel execution before it can continue since it needs its results. Now HPX
comes into play. HPX Compute allows us the get a future from a Cuda stream. This future will enter
the ready state once the stream has finished all operations that were queued in this stream before the
creation of the future. HPX internally realizes this by utilizing Cuda callback functions. If we call
the get method of this HPX future and the future is not ready yet, it causes the current HPX worker
thread to jump away. It will then work on another task, given by the HPX scheduler. This task
could, for example, be to calculate the cell to cell interactions of another node in the octree. Once
the HPX future becomes ready, the HPX scheduler gets notified with the Cuda callback function
and will schedule a worker thread (not necessarily the same one) to continue where the other worker
thread left off. This time the results are ready, and the execution can proceed normally. This way
the HPX worker thread does not have to explicitly wait for the execution on the GPU to finish, and
can work on other tasks instead.

However, the amount non-FMM related tasks is particularly limited as long as we are calculating the
gravity. Therefore, it is still likely that we starve the CPU of work if we queue every FMM kernel
an HPX worker thread has to process, on the GPU. We need a load balancing solution, which only
launches an FMM kernel on the GPU if the GPU is not yet out of resources and can support another
concurrent kernel launch. Using Cuda, we can query whether a Cuda stream is currently busy or
not. We can use this to implement a load balancer. An HPX worker thread will only launch a kernel
on the GPU if its associated Cuda stream is not busy. Otherwise, we launch the kernel on the CPU.
While this not accurately represents how busy the GPU currently is since we can have multiple
worker threads, each with an associated stream, it is a close enough, yet simple approximation.
Using all of the above concepts, we can use the Cuda stream of each HPX worker thread as a small
coprocessor. The HPX worker thread can offload some of the stencil FMM kernel launches to the
GPU without explicitly having to wait for any response from the GPU before continuing with other
tasks. Meanwhile, the GPU can execute the stencil FMM kernel and copy the results back to the
CPU host-side memory.

The last thing to consider is the number of Cuda streams we need to fully utilize a GPU. With
our current approach, we would have eight Cuda streams if we launch Octo-Tiger with eight HPX
worker threads. This would not be enough streams. To allow multiple streams per worker thread,
we introduce a thread local scheduler for each HPX worker thread. This scheduler can have multiple
launch slots. Each slot has an associated Cuda stream, a kernel staging area and a kernel
device enviroment. If a worker thread requests a launch slot from its scheduler to execute an
FMM kernel on the GPU, the scheduler will check whether there is a launch slot with a free Cuda
stream. If there is, it will return its ID. This allows the worker thread access to the stream, the
kernel staging area, and the kernel device enviroment of this slot. If there is no slot available,
the scheduler will simply return −1, indicating that worker thread should launch the FMM kernel
on the CPU. Instead of just one, an HPX worker thread can now have multiple streams to act as
coprocessors for executing the stencil FMM kernels.

We can now write the algorithm to launch an FMM kernel, as shown in algorithm 7.

43

5 Octo-Tiger’s FMM in a Heterogeneous Environment

Step 1: i← query scheduler for launch slot ;
if i == -1 then

Step 2: No Cuda slot available. Convert AoS into Soa data and launch FMM kernel on
CPU ;

else
Step 3: Get pinned kernel staging area for slot i from scheduler;
Step 4: Convert AoS data of the octree node an its neighbors into SoA data, stored in
the pinned staging area;

Step 5: Get kernel device environment for slot i from scheduler. This environment
contains the handles for the Cuda device buffers;

Step 6: Get Cuda stream s for slot i from scheduler;
Step 7: Queue asynchronous copy of pinned SoA input data to Cuda device buffers in
stream s;

Step 8: Queue FMM kernel execution in stream s;
Step 9: Queue asynchronous asynchrous copy of results back to host in strean s;
Step 10: Create HPX future f which will be ready once the stream s has finished its
three queued operations;

Step 11: Call f.get(). This allows the current HPX worker thread to jump away to
work on other tasks, until the future f becomes ready. Once the future becomes ready
a worker thread will return to this point;

end
Algorithm 7: Algorithm to launch a stencil FMM interaction kernel on a heterogeneous
CPU/GPU system.

5.3 Scheduler Parameters

The number of launch slots each scheduler has is an important knob to turn. On the one hand, if
we have too many of these slots, we will exceed the number of parallel kernel executions the GPU
supports, while simultaneously starving the CPU of work. On the other hand, if we use too few
launch slots, we waste potential resources on the GPU.

We introduce the command line parameter Cuda_streams_per_locality to control how many
overall Cuda streams should be used by Octo-Tiger on one compute node. These streams will be
evenly distributed over the schedulers associated with the individual HPX worker threads. Each
scheduler can end up with zero or more launch slots. If it has zero slots, it will simply always use
the CPU to compute the FMM interaction kernels.

We also introduce a second command line parameter Cuda_streams_per_gpu. It specifies how many
streams should be used per GPU. If the other parameter exceeds that number, the remaining streams
will be placed onto another GPU if one is available on the current hardware platform. For example,
if we launch Octo-Tiger with eight worker threads, 16 Cuda streams per compute node and 16 Cuda
streams per GPU, we would solely use one GPU and each of the eight schedulers would have two
launch slots. If we launch Octo-Tiger with 24 Cuda streams per compute node and 16 Cuda stream
per GPU, we would place 16 streams on the first GPU and eight streams on the second one. With
48 streams per compute node, and still 16 streams per GPU, we would use three GPUs, each with
16 streams. This parameter effectively adds multi GPU support.

44

6 Results

In this chapter we take a look at the runtime data Octo-Tiger achieves with different platforms,
configurations and scenarios. First we look at the scenarios, and the toolchain we are going to use.
Next, we compare the stencil based FMM interaction kernels we introduced in chapter 4 with the
FMM kernels using the interaction list. Finally, we will show how well Octo-Tiger performs using
CPU and GPU at the same time.

6.1 Scenarios

We use multiple scenarios to collect runtime data with Octo-Tiger. All of these scenarios simulate
a moving star, however, they use different sizes for the moving star (Xscale). Additionally we
increased the maximum depth of the octree (Max_level) and the amount of steps after which we
stop the simulation (Stopstep).

1. Scenario:
-Disableoutput -Problem=moving_star -Max_level=6 -Odt=0.3 -Stoptime=0.2 -Xscale=20.0

-Omega=0.1 -Stopstep=20

2. Scenario:
-Disableoutput -Problem=moving_star -Max_level=7 -Odt=0.3 -Stoptime=0.2 -Xscale=32

-Omega=0.1 -Stopstep=20

3. Scenario:
-Disableoutput -Problem=moving_star -Max_level=7 -Odt=0.3 -Stoptime=0.2 -Xscale=20

-Omega=0.1 -Stopstep=20

4. Scenario:
-Disableoutput -Problem=moving_star -Max_level=8 -Odt=0.3 -Stoptime=0.2 -Xscale=32

-Stopstep=6

5. Scenario:
-Disableoutput -Problem=moving_star -Max_level=9 -Odt=0.3 -Stoptime=0.2 -Xscale=32

-Omega=0.1 -Stopstep=6

We use scenario 1 for the comparison between the stencil FMM kernels and the interaction list FMM
kernels. Scenario 2, 3 and 4 require longer running times than scenario 1. We use these scenarios
to compare the runtime of Octo-Tiger when we only use the CPU, to the runtime we get when using
the CPU and all available GPUs. Scenario 5 is too large to fit into the memory of a single platform.
We use it to test the distributed scaling with multiple compute nodes on Piz Daint.

45

6 Results

6.2 Toolchain

We always used the same toolchain for compiling Octo-Tiger. We compile each of the dependencies
from source. The build scripts to accomplish this can be found on Github 1. After we have compiled
Clang, we use it to compile the rest in the same order as the appear in the following table.

Software Version/Commit
Clang 7.0.0, Commit 23b713ddc4
Boost 1.65
Jemalloc 5.0.1
Hwloc 1.11.7
Vc Commit 157026d3
HPX 1.1.0
Octotiger Commit 0f4af8a

6.3 Platforms

We use multiple platforms to collect the runtime data of the following tests. We have a set of
platforms for performance comparison between the stencil FMM kernels and the interaction list
FMM kernels, each containing only a CPU. We have another set of platforms for the tests regarding
the Cuda implementation.

6.3.1 CPU-only Platforms

These are the platforms we use for the performance comparison:

• Intel Core i7-7500U with 2.70 GHz and 2 Cores

• Intel Core i7-4770K with 3.50GHz and 4 Cores

• Intel Xeon CPU E5-2660 v3 with 2.60GHz and 20 Cores

• Intel Xeon Gold 5120 with 2.2GHz and 28 Cores

• Intel Xeon Gold 6148 with 2.4GHz and 40 Cores

• Intel Xeon Phi 7210 with 1.3GHz and 68 Cores

The most interesting of these platforms is the Knights Landing Xeon Phi 7210, since it originally
motivated the creation of the stencil FFM kernels. We included two more platforms that are capable
of AVX512, the Intel Xeon Gold 6148 and the Intel Xeon Gold 5120. While these two CPUs look
similar, the have one key difference. The Xeon Gold 6148 has two FMA units per core, and the
Xeon Gold 5120 only one, consequently the peak performance of the Gold 6148 is much higher.

1https://github.com/G-071/OctotigerClangScripts.git

46

6.4 Performance Comparison between the Stencil FMM Kernels and the Interaction List FMM
Kernels

We also added three platforms with CPUs that only support AVX2. The first is a consumer grade
Kaby Lake CPU, followed by an consumer grade Haswell CPU. To test a Haswell Platform with
more cores we added the Intel Xeon CPU E5-2660.

6.3.2 CPU/GPU Platforms

We further use three platforms to test the Cuda implementation. Each of these three platforms
contains a powerful CPU, as well as one or more NVIDIA GPUs. For each of the follwing tests
with these platforms, we always use the CPUs to their fullest potential by launching as many HPX
worker threads as we have CPU cores.

• argon-gtx Contains an Intel Xeon Gold 5120 with 2.20 GHz and 28 cores, combined with
eight NVIDIA Geforce GTX 1080 TI GPUs.

• argon-tesla Uses an Intel Xeon Silver 4116 CPU with 2.10GHz and 24 cores. This platform
also contains two NVIDIA Tesla P100 GPUs.

• Piz Daint (Single Compute Node) Contains an Intel Xeon E5-2690 v3 with 2.60 GHz and
12 cores, as well as an NVIDIA Tesla P100 GPU.

6.4 Performance Comparison between the Stencil FMM Kernels and
the Interaction List FMM Kernels

Here, we are comparing the runtime we can achieve with the stencil FMM kernels with the runtime
we can achieve using the interaction list FMM kernels. We use a series of tests and platforms to
achieve this. In Test 1 we will take a look at overall single core performance using different kernel
combinations. In Test 2 we slowly increase the number of CPU cores to examine the node-level
scaling. In Test 3 we look again at the performance of the different kernels, but this time using all
available ressources on each platform. We conclude this section with a small summary.

6.4.1 Method for Collecting Runtime Data

To compare the runtime between the stencil FMM kernels and the old interaction list FMM methods,
we use command line arguments for Octo-Tiger to switch between them. By doing this, we ensure,
that we use the same toolchain for both versions. We cannot merely use a commit at the beginning
of this work for comparison since it would work neither with HPX 1.1.0, nor be capable of being
compiled with Clang. The other way around this holds true as well, since a downgrade to HPX 1.0.0
would involve breaking changes that would influence the performance comparison. For example,
on some machines, the switch to Clang alone brought a performance boost of up to 10% for both
versions.

Since we are using the same version of Octo-Tiger no matter what kind of FMM kernels we run, we
are still calling the methods to convert the AoS data to SoA data. However, for the comparison
between the kernels itself, this is rather useful since the conversion is meant to be a temporary
measure anyway and will be removed once more of Octo-Tiger gets converted to the SoA data

47

6 Results

Method Fraction of runtime
m2mp stencil kernel with angular corrections 19.51%
p2p stencil kernel 16.06%
reconstruct 14.50%
m2mp stencil kernel without angular corrections 10.24%
p2m stencil kernel with angular corrections 3.52%
p2m stencil kernel without angular corrections 1.42%
Overall percentage of time spent with the FMM 50.75%

Table 6.1: Most compute intensive parts of Octo-Tiger when using the stencil FMM kernels on a
Haswell Processor.

structure. In our analysis of the hotspots of Octo-Tiger when using the stencil kernels, the conversion
methods do not show up at all, as can be seen in the table 6.1. While the overall time we spent
with the computation of the FFM algorithm is about 51% (including the conversion methods), the
runtime is being used in the methods calculating the interactions. The only method in this list
of hotspots, which has nothing to do with the FMM part of Octo-Tiger, is reconstruct which is
related to the creation of the octree.

6.4.2 Comparison Test 1: Measuring Single Core Speedup

In our first test we compare the total runtime of Octo-Tiger using either the stencil FMM kernels, or
the old interaction list FMM kernels. Additionally, we show the speedup we achieve by using the
stencil-based kernels. We use scenario one to collect this data. The results can be seen in table
6.2.

Platform (one core used) Using interac-
tion list

Using stencil Speedup

Intel Core i7-7500U CPU with 2.70 GHz 1076s 821s 1.31
Intel Core i7-4770K with 3.50GHz 1127s 916s 1.23
Intel Xeon CPU E5-2660 v3 with 2.60GHz 1568s 1308s 1.20
Intel Xeon Gold 5120 with 2.2GHz 2114s 815s 2.59
Intel Xeon Gold 6148 with 2.4GHz 1687s 643s 2.62
Intel Xeon Phi 7210 with 1.3GHz 8317s 3463s 2.40

Table 6.2: Per core performance using the refactored Octo-Tiger.

We achieve a speedup on all platforms. The ones supporting AVX512 benefit the most from using
the stencil FMM kernels.

In table 6.3 we can see how Octo-Tiger performs when we are mixing the interaction list FMM
kernels with the stencil FMM kernels. For simplicity, we do not differentiate between the kernels
including angular corrections, and the respective versions that do not. We always consider both at
the same time. In the upper table, we can see the raw runtimes. For the runtimes in column two, we
use only the interaction list FMM kernels. In the second column, we exchange the interaction list

48

6.4 Performance Comparison between the Stencil FMM Kernels and the Interaction List FMM
Kernels

multipole-multipole kernel, as well as the multipole-monopole kernel, with their respective version
of stencil FMM kernels (m2mp kernel). For the remaining kernels, we still use the interaction list
kernels. This allows us to see the speedup we get by using the stencil m2mp kernel. Similarly, we
can calculate the speedup that we can achieve by using the stencil monopole-monopole kernel (p2p).
To do this calculation, we use the runtimes in column three and compare them with the interaction
list runtimes in column two.

The most beneficial stencil kernel is the combined multipole kernel (m2mp), followed by the
monopole-monopole stencil kernel (p2p). The monopole-multipole (p2m) stencil kernel yields the
worst performance of the three. Multipole to monopole interactions are comparatively rare, so we
hit the early exit condition in this kernel very often. As we can see in table 6.1 the p2m interactions
have the least impact on the overall performance. In the lower part of the table 6.3 we can directly
see the speedups each stencil kernel accomplishes on its own over the runtime when only using the
interaction list kernels. Each of these speedups is in relation to the runtimes when we are using
only the interaction list FMM kernel. Therefore, they do not add up to the overall speedup. We can
calculate the overall speedup using column two and six in the upper table 6.3. This results in the
same values as in table 6.2.

Platform (one core used) All inter-
action list

m2mp p2p p2m All stencil

Intel Core i7-7500U CPU 1076s 862s 1049s 1073s 821s
Intel Core i7-4770K 1127s 943s 1101s 1128s 916s
Intel Xeon CPU E5-2660 v3 1568s 1359s 1482s 1601s 1308s
Intel Xeon Gold 5120 2114s 995s 1939s 2107s 815s
Intel Xeon Gold 6148 1687s 761s 1575s 1687s 643s
Intel Xeon Phi 7210 8317s 4207s 7873s 8031s 3463s
Platform Speedup

stencil
m2mp

Speedup
stencil p2p

Speedup
stencil p2m

Intel Core i7-7500U CPU 1.24 1.03 1.00
Intel Core i7-4770K 1.19 1.02 0.999
Intel Xeon CPU E5-2660 v3 1,14 1.09 0.98
Intel Xeon Gold 5120 2.12 1.09 1.00
Intel Xeon Gold 6148 2.21 1.07 1.00
Intel Xeon Phi 7210 1.97 1.06 1.04

Table 6.3: Runtime for various kernel combination. Either we use only the interaction list kernels
(left), we use one of the stencil kernels and use the interaction kernels for the rest
(middle), or only the stencil-based kernels (right).

49

6 Results

6.4.3 Comparison Test 2: Measuring Node-Level Scaling

In the last test, we showed that the stencil FMM interaction kernels are faster on all platforms if we
are only using one core. Now we test how well these results scale up if we are using more than one
core. To do this, we slowly increase the amount of HPX worker threads and record the runtime and
parallel efficiency for both the interaction list FMM kernels, and the stencil FMM kernels.

Since the i7-7500U CPU only has two cores and the i7-4770k only has four cores, we do not
consider these platforms for this test. We instead focus on the other four platforms, since they
include more cores, enabling us to get a clearer picture how the parallel efficiency is affected.

• Intel Xeon CPU E5-2660 v3: On this Haswell platform, we achieve almost exactly the
same parallel efficiency with both variants of the kernel, as we can see in figure 6.1. At the
maximum number of cores used, the parallel efficiency using the stencil kernels if even a
bit higher than the other one. Thus, the runtime speedup stays roughly the same, even when
utilizing the whole 20 cores.

• Intel Xeon Gold 5120 The results for this platform can been seen in the top section of table
6.3. Using the Xeon Gold 5120, the parallel efficiency drops quickly on both platforms.
However, while they are dropping in a similar pattern, the stencil kernels always yield a
poorer parallel efficiency than the interaction FMM kernels.

• Intel Xeon Gold 6148 This time the results can be found in the bottom section of table 6.3.
We see a similar pattern with on the other Intel Xeon Gold 5120, albeit less extreme.

• Knights Landing Xeon Phi 7210 On the Knights Landing Platform we can see a similar
pattern in figure 6.4. There is still a runtime speedup using the stencil FMM kernels, however
the parallel efficiency drops more quickly.

6.4.4 Comparison Test 3: Measuring Total Speedup per Platform

In the first test we only measured the runtime and the speedup for a single core. While this eliminated
any scaling differences that might occur, it is also an unrealistic scenario. Usually we want to use
all of the processing power we can. Therefore, we use all available CPU cores in this test run by
launching as many HPX worker threads as possible.

As we can see in table 6.4, the speedup obtained when we use the whole CPU is on the Haswell
platform, it even increased slightly from 1.31 to 1.33. However, on the other three platforms we
can see the effect of the decreased parallel efficiency that we measured last test. While the stencil
kernels still achieve a significant speedup over the interaction list kernels, this speedup has dropped
noticeably.

As we can see in table 6.5, the influence the different stencil FMM kernels have on the runtime stays
roughly the same if we use the complete CPU on each platform. Due to the decrease in parallel
efficiency using the AVX512 platforms, we achieve a smaller speedup using the stencil kernels.
However, the m2mp kernel is still the most influential one.

50

6.4 Performance Comparison between the Stencil FMM Kernels and the Interaction List FMM
Kernels

86
106

1308
1568

1 2 4 8 16

0.6
0.7
0.8
0.9
1.0

To
ta

lR
un

tim
e

in
se

co
nd

s

Pa
ra

lle
lE

ffi
ci

en
cy

Number of HPX Worker Threads

Node-level Scaling of Interaction List FMM Kernels and Stencil FMM Kernels

Parallel efficiency using interaction list kernels
Parallel efficiency using stencil kernels

Runtime using interaction list kernels
Runtime using stencil kernels

Figure 6.1: Comparison of the node-level scaling on an Intel Xeon CPU E5-2660 v3.

65

145

815

2114

100

1000

1 2 4 8 16

0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
ta

lR
un

tim
e

in
se

co
nd

s

Pa
ra

lle
lE

ffi
ci

en
cy

Number of HPX Worker Threads

Node-level Scaling of Interaction List FMM Kernels and Stencil FMM Kernels

Parallel efficiency using interaction list kernels
Parallel efficiency using stencil kernels

Runtime using interaction list kernels
Runtime using stencil kernels

Figure 6.2: Comparison of the node-level scaling on an Intel Xeon Gold 5120.

51

6 Results

38

80

643

1687

100

1000

1 2 4 8 16 32

0.5
0.6
0.7
0.8
0.9
1.0

To
ta

lR
un

tim
e

in
se

co
nd

s

Pa
ra

lle
lE

ffi
ci

en
cy

Number of HPX Worker Threads

Node-level Scaling of Interaction List FMM Kernels and Stencil FMM Kernels

Parallel efficiency using interaction list kernels
Parallel efficiency using stencil kernels

Runtime using interaction list kernels
Runtime using stencil kernels

Figure 6.3: Comparison of the node-level scaling on an Intel Xeon Gold 6148.

76

146

3463

8317

1 2 4 8 16 32 64

0.6
0.7
0.8
0.9
1.0

To
ta

lR
un

tim
e

in
se

co
nd

s

Pa
ra

lle
lE

ffi
ci

en
cy

Number of HPX Worker Threads

Node-level Scaling Comparison between old and new FMM kernels

Parallel efficiency using only old kernels
Parallel efficiency using only new kernels

Runtime using only old kernels
Runtime using only new kernels

Figure 6.4: Comparison of the node-level scaling on a Xeon Phi 7210.

52

6.4 Performance Comparison between the Stencil FMM Kernels and the Interaction List FMM
Kernels

Platform Using interac-
tion list

Using stencil Speedup

Intel Core i7-7500U CPU with 2.70 GHz 681s 513s 1.33
Intel Core i7-4770K with 3.50GHz 370s 274s 1.35
Intel Xeon CPU E5-2660 v3 with 2.60GHz 106s 86s 1.23
Intel Xeon Gold 5120 with 2.2GHz 145s 65s 2.22
Intel Xeon Gold 6148 with 2.4GHz 80s 38s 2.07
Intel Xeon Phi 7210 with 1.3GHz 146s 76s 1.90

Table 6.4: Speedup obtained by using stencil FMM kernels over the interaction list FMM kernels.

Platform All inter-
action list

m2mp p2p p2m All stencil

Intel Core i7-7500U CPU 681s 547s 651s 681s 513s
Intel Core i7-4770K 370s 322s 326s 369s 274s
Intel Xeon CPU E5-2660 v3 106s 93s 97s 108s 86s
Intel Xeon Gold 5120 145s 72s 139s 144s 65s
Intel Xeon Gold 6148 80s 42s 79s 79s 38s
Intel Xeon Phi 7210 146s 93s 135s 142s 76s
Platform Speedup stencil

m2mp
Speedup stencil
p2p

Speedup stencil
p2m

Intel Core i7-7500U CPU 1.24 1.05 0.997
Intel Core i7-4770K 1.14 1.13 1.00
Intel Xeon CPU E5-2660 v3 1,14 1.09 0.98
Intel Xeon Gold 5120 2.00 1.04 1.00
Intel Xeon Gold 6148 1.86 1.01 1.01
Intel Xeon Phi 7210 1.56 1.08 1.03

Table 6.5: Runtime for various kernel combination. Either we use only the interaction list kernels
(left), one stencil FMM kernel (middle), or only the stencil-based kernels (right)

6.4.5 Test Summary

Using the stencil FMM kernels, we achieve a speedup over the old interaction list kernels in each of
our tests. On platforms using AVX512 the difference between the kernels is significant, which is
the result we expected when first introducing the stencil FMM kernels to Octo-Tiger. The speedup
is less severe on AVX2 platforms, yet it is still noticeable.

We also notice a decrease in parallel efficiency using the stencil kernels over the interaction list
kernels. However, if we examine the parallel efficiency at specific runtimes, we can see that the
stencil kernels achieve a similar parallel efficiency at similar runtimes. For example, using the
interaction list kernels on the Knights Landing platform with all 68 cores, we achieve a parallel
efficiency of 0.83 and a runtime of 146 seconds. Using the stencil kernels, we can achieve this
runtime with only 29 cores. At this point, we still have a parallel efficiency of 0.81. The same holds
true when using the Xeon Gold 6148. Using the interaction list kernels, we achieve a runtime of 80

53

6 Results

seconds and a parallel efficiency of 0.6 if we use all cores. Using the stencil kernels, we achieve a
parallel efficiency of 0.66 at a runtime of 79 seconds. To reach this runtime, we only require 14
cores. The stencil kernels seem to run out of work faster, which decreases the parallel efficiency
further down the line.

54

6.5 GPU Tests

6.5 GPU Tests

In this section, we take a look at the speedup we can accomplish when we start to use NVIDIA
GPUs as coprocessors to help out with the execution of the stencil FMM kernels. In the second test,
we take a look at the impact the number of used Cuda streams has on the runtime. We also compare
it with the runtime, when we use the same number of overall Cuda streams, but split them onto
multiple GPUs. In the last test, we use Piz Daint to simulate a large scenario Octo-Tiger on multiple
nodes. We use 60 compute nodes and thus 60 NVIDIA P100 GPUs for this run.

6.5.1 GPU Test 1: Speedup when using both CPU/GPU

We tested the implementation with three different scenarios, using three different platforms. We use
scenario two, three and four. In each run, we first collected the total runtime data using only the
CPU of the respective platform. After that, we added all available GPUs of the platform to assist the
CPU. We use 24 Cuda streams for each GPU, meaning each of them can process 24 octree nodes
simultaneously. On the CPU we use all available cores for every run.

For scenario 2 the results are in table 6.6, for scenario 3 in table 6.7, and for scenario 4 the results
can be found in table 6.8. For all of these tests we achieve a similar speedup.

Platform CPU-only CPU and GPU Speedup
argon-gtx 108s 81s 1.32
argon-tesla 140s 108s 1.29
Piz Daint (single node) 176s 126s 1.39

Table 6.6: Runtimes of scenario 2 using either CPU only or CPU/GPU combined.

Platform CPU-only CPU and GPU Speedup
argon-gtx 242s 189s 1.28
argon-tesla 331s 222s 1.40
Piz Daint (single node) 424s 311s 1.37

Table 6.7: Runtimes of scenario 3 using either CPU only or CPU/GPU combined.

Platform CPU-only CPU and GPU Speedup
argon-gtx 143s 102s 1.40
argon-tesla 321s 223s 1.44
Piz Daint (single node) 230s 158s 1.46

Table 6.8: Runtimes of scenario 4 using either CPU only or CPU/GPU combined.

55

6 Results

6.5.2 GPU Test 2: Varying the Number of Cuda Streams

In the last test we used a fixed number of Cuda streams for each GPU. However, the theoretical limit
of concurrent kernel execution is higher than 24. An NVIDIA Geforce GTX 1080 Ti supports 32
concurrent kernels, an NVIDIA Tesla P100 GPU supports 128. In this test, we slowly increase the
number of Cuda streams per GPU used for each run and measure the runtime.

In figure 6.5 we can see the result of this test on the argon-tesla platform. Even one P100 supports
128 concurrent kernel executions. Therefore, we would expect the runtime to be optimal if we are
using 128 Cuda streams. However, this is not the case. After 24 Cuda streams, the runtime starts to
increase again. We can still benefit from using a second P100 though. In this case, we split the
streams between the GPUs. The first 24 Streams are being run on the first P100. The remaining
streams will be run on the second P100.

We see a similar behavior using the platform argon-gtx in figure 6.6. If we use only one GPU, the
runtime starts to increase again if we use more than 22 streams. If we use two GPUs, this does not
happen. In this case, the scheduler switches to the second GPU at 16 streams. We achieve the best
runtime in this test when we are using four GPUs, each of them with eight Cuda streams.

Since the argon-gtx contains eight GPUs, we repeat this test multiple times using all of them.
However, we vary the maximum number of streams of each GPU. As we can see in figure 6.7,
we achieve a similar running time in the end. If we are only using 16 streams on each GPU, the
scheduler will use all GPUs sooner. For example, at 32 streams it would already use two GPUs. In
the run with 32 streams per GPU, it would only use one. We thus achieve a similar running time
faster, by using fewer streams per GPU. The best overall running time was obtained with 24 streams
per GPU, resulting in an overall number of 192 streams. However, using 16 streams per GPU we
reach a runtime almost as good with only 128 streams.

6.5.3 GPU Test 3: Distributed Run

In figure 6.8 we can see how Octo-Tiger scales to multiple comute nodes on Piz Daint. We use
scenario 5. This scenario is too large to fit on a single compute node, so we therefore start with
twelve compute nodes. We do each run twice, one time with the P100 GPUs of the compute nodes,
and one time without them. If we use the P100 GPUs in those twelve compute nodes we achieve a
speedup of 1.33 over the runtime without the GPUs. Using the GPUs, we achieve almost the same
parallel efficiency as without them. Thus we can maintain this speedup, even if are scaling up to 60
compute nodes.

6.5.4 GPU Test Summary

In all our GPU tests, we achieve a speedup if we add one or more GPUs to assist the CPU.
Furthermore, we achieve the same distributed parallel efficiency with or without using the GPUs on
Piz Daint. Thus the speedup is also applicable to larger scenarios than the ones we tested here.

However, the speedup we achieve depends on how many Cuda streams we use on each GPU. On the
one hand, if we are not using enough streams, we merely get the overhead of using a GPU without a
noticeable runtime improvement. On the other hand, the runtime improves only up to 24 Streams

56

6.5 GPU Tests

100

110

120

130

140

150

160

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

To
ta

lR
un

tim
e

in
se

co
nd

s

Number of Cuda Streams

Influence of the Cuda Streams on the Runtime

Runtime using one NVIDIA Tesla P100
Runtime using two NVIDIA Tesla P100

Figure 6.5: Comparison of the runtime for a different number of Cuda streams using either one or
two P100 GPUs. We use scenario 2 and the platform argon-tesla for this test.

90

95

100

105

110

115

120

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

To
ta

lR
un

tim
e

in
se

co
nd

s

Number of Cuda Streams

Influence of the Cuda Streams on the Runtime

Runtime using one NVIDIA GTX 1080 Ti
Runtime using two NVIDIA GTX 1080 Ti
Runtime using four NVIDIA GTX 1080 Ti

Figure 6.6: Comparison of the runtime for a different number of Cuda streams using either one, two
or four GTX 1080 Ti GPUs. We use scenario 2 and the platform argon-gtx for this test.

57

6 Results

80

85

90

95

100

105

110

115

120

32 64 96 128 160 192 224 256

To
ta

lR
un

tim
e

in
se

co
nd

s

Number of Cuda Streams

Influence of the Cuda Streams on the Runtime

Runtime using 16 Cuda streams per GPU device
Runtime using 24 Cuda streams per GPU device
Runtime using 32 Cuda streams per GPU device

Figure 6.7: Comparison of the runtime using a different number of Cuda streams per GPU. We
use scenario 2 and the platform argon-gtx for this test. Each of the three runs will
eventually use all eight GPUs, albeit with a different number of streams per GPU.

73

97

320

422

12 24 36 48 60

0.8
0.9
1.0

To
ta

lR
un

tim
e

in
se

co
nd

s

Pa
ra

lle
lE

ffi
ci

en
cy

Number of Compute Nodes

Distributed Scaling on Piz Daint with and without GPUs

Parallel efficiency using only CPU on each node
Parallel efficiency using both CPU and GPU on each node

Runtime using only CPU on each node
Runtime using both CPU and GPU on each node

Figure 6.8: Distributed run of Octo-Tiger with scenario 5. We use 12 to 60 compute nodes, each
with or without their P100.

58

6.5 GPU Tests

per GPU. More than that yield no runtime improvement. In theory, both GPUs we considered in
our test should support more than 24 concurrent streams. The Geforce GTX 1080 Ti supports
32, the P100 128 concurrent kernel launches. We also do not run out of work. As we can see in
test 2, splitting the same amount of streams onto multiple GPUs instead of just one, improves the
runtime significantly. Using the NVIDIA profiler, we can also see that more than 24 FMM kernels
get launched concurrently on a GPU. However, we can also observe that the runtime per kernel
increases when more of them are running in parallel. Thus, we are most likely facing a bandwidth
problem.

59

7 Conclusion and Future Work

In this work, we introduced the Struct of Array data structure and five stencil FMM interaction
kernels into Octo-Tiger. Using our implementation of the five new interaction kernels, we achieved
a consistent speedup over the interaction list FMM kernels that Octo-Tiger was used before. We
can see the most significant speedup on platforms supporting AVX512. Here, the new interaction
kernels are especially beneficial. Using all 40 cores of an Intel Xeon Gold 6148, we achieve a
speedup of 2x using the stencil FMM kernels. On all 68 cores of an Intel Xeon Phi 7210, the
speedup was 1.9x. On platforms only supporting AVX2 we still experience a speedup, albeit less
so.

We implemented these stencil kernels in a way so that they are also executable by NVIDIA GPUs.
By using templated functions and lambdas functions, we can call the same cell to cell interaction
methods on both the CPU and the GPU. This way we can minimize code duplication and increase
the maintainability of the code. We further introduced a way of using the GPU as a coprocessor
without hindering the CPU. To accomplish this, we made use of HPX Compute and Cuda streams.
Using a CPU/GPU scheduler, we avoid starving the CPU of work, while still being able to offload
the execution of some interaction kernels to the GPU. Using both the CPU and the GPU, we achieve
a consistent speedup compared to the runtime when we are using only the CPU. For the platforms
and scenarios tested, this speedup ranged from 1.28 to 1.46. Since we are only offloading work
regarding the FMM to the GPU, the theoretical speedup we can obtain is limited. In our prior work
[PDM+18] the fast multipole method was responsible for about 50% of the runtime, which would
limit the maximum speedup we can expect to two. This way of interleaving CPU and GPU work is
also not specific to Octo-Tiger. As long as HPX and Cuda are being used, other applications could
use a very similar approach. To an extent, they could even reuse the scheduler introduced in this
work.

Lastly, we were able to maintain the distributed scalability of Octo-Tiger. On Piz Daint we used 60
compute nodes to simulate a large scenario. Using all 60 nodes, we still achieved a speedup of 1.33
when adding all 60 of the P100 GPUs to assist with the computation.

Future Work

In our prior work, we experienced high cache pressure in the FMM kernels, which lead to
performance problems on devices with a small L2 cache. We intend to develop better algorithms for
the kernels to improve that. This could also help us to achieve better kernel runtimes on the GPU
since memory bandwidth and the number of available registers is limited here. If we minimize
the data we touch we could launch more threads concurrently per Streaming Processor, due to the
reduced register usage.

61

7 Conclusion and Future Work

We could accomplish this by splitting the most compute-intensive stencil FMM kernel, the m2mp
kernel, into multiple parts. If we sort the computations within this kernel in the right way and split
it, we do not have to touch all 20 multipole moments for each cell to cell interaction. Instead, we
would have multiple kernels, each only touching a subset of the 20 multipoles coefficients per cell.
This way we could reduce both cache pressure, as well as register usage on the GPU, while still
maintaining the stencil approach.

We also intend to offload more work to the GPU. So far we can only execute the FMM kernels on
the GPU. However, now that the scheduler is in place, it is simpler to start offloading other methods
as well.

62

Bibliography

[BB98] H. A. Bethe, G. Brown. “Evolution of binary compact objects that merge”. In: The
Astrophysical Journal 506.2 (1998), p. 780 (cit. on p. 13).

[BBCP90] W. Benz, R. Bowers, A. W. Cameron, W. Press. “Dynamic mass exchange in doubly
degenerate binaries. I-0.9 and 1.2 solar mass stars”. In: The Astrophysical Journal
348 (1990), pp. 647–667 (cit. on p. 14).

[BCD+16] T. Barnes, B. Cook, J. Deslippe, D. Doerfler, B. Friesen, Y. He, T. Kurth, T. Koskela,
M. Lobet, T. Malas, et al. “Evaluating and optimizing the NERSC workload on
knights landing”. In: Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), International Workshop on. IEEE. 2016,
pp. 43–53 (cit. on p. 35).

[BH86] J. Barnes, P. Hut. “A hierarchical O (N log N) force-calculation algorithm”. In: nature
324.6096 (1986), p. 446 (cit. on p. 19).

[CGH+07] G. C. Clayton, T. R. Geballe, F. Herwig, C. Fryer, M. Asplund. “Very Large Excesses
of 18O in Hydrogen-deficient Carbon and R Coronae Borealis Stars: Evidence for
White Dwarf Mergers”. In: The Astrophysical Journal 662.2 (2007), p. 1220 (cit. on
p. 13).

[Cla96] G. C. Clayton. “The R Coronae Borealis Stars”. In: Publications of the Astronomical
Society of the Pacific 108.721 (1996), p. 225. url: http://stacks.iop.org/1538-
3873/108/i=721/a=225 (cit. on p. 13).

[CT02] C. Cutler, K. S. Thorne. “An overview of gravitational-wave sources”. In: General
Relativity and Gravitation. World Scientific, 2002, pp. 72–111 (cit. on p. 13).

[Deh00] W. Dehnen. “A Very Fast and Momentum-conserving Tree Code”. In: The Astro-
physical Journal Letters 536.1 (2000), p. L39. url: http://stacks.iop.org/1538-
4357/536/i=1/a=L39 (cit. on p. 19).

[Deh02] W. Dehnen. “A hierarchical O (N) force calculation algorithm”. In: Journal of
Computational Physics 179.1 (2002), pp. 27–42 (cit. on p. 26).

[Den74] J. B. Dennis. “First version of a data flow procedure language”. In: Programming
Symposium. Springer. 1974, pp. 362–376 (cit. on p. 32).

[EFGL14] P. Estérie, J. Falcou, M. Gaunard, J.-T. Lapresté. “Boost. simd: generic programming
for portable simdization”. In: Proceedings of the 2014 Workshop on Programming
models for SIMD/Vector processing. ACM. 2014, pp. 1–8 (cit. on p. 33).

[ET09] W. Even, J. E. Tohline. “Constructing synchronously rotating double white dwarf
binaries”. In: The Astrophysical Journal Supplement Series 184.2 (2009), p. 248
(cit. on p. 18).

63

http://stacks.iop.org/1538-3873/108/i=721/a=225
http://stacks.iop.org/1538-3873/108/i=721/a=225
http://stacks.iop.org/1538-4357/536/i=1/a=L39
http://stacks.iop.org/1538-4357/536/i=1/a=L39

Bibliography

[Fog13] A. Fog. “C++ vector class library”. In: URL: http://www. agner. org/optimize/vector-
class. pdf (2013) (cit. on p. 33).

[GR87] L. Greengard, V. Rokhlin. “A fast algorithm for particle simulations”. In: Journal
of Computational Physics 73.2 (1987), pp. 325–348. issn: 0021-9991. doi: https:
//doi.org/10.1016/0021-9991(87)90140-9. url: http://www.sciencedirect.
com/science/article/pii/0021999187901409 (cit. on p. 19).

[GSS+07] G. R. Gao, T. Sterling, R. Stevens, M. Hereld, W. Zhu. “Parallex: A study of a new
parallel computation model”. In: Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International. IEEE. 2007, pp. 1–6 (cit. on p. 31).

[Hac86] I. Hachisu. “A versatile method for obtaining structures of rapidly rotating stars.
II-Three-dimensional self-consistent field method”. In: The Astrophysical Journal
Supplement Series 62 (1986), pp. 461–499 (cit. on p. 18).

[HDB+17] T. Heller, P. Diehl, Z. Byerly, J. Biddiscombe, H. Kaiser. “HPX–An open source C++
Standard Library for Parallelism and Concurrency”. In: (2017) (cit. on p. 31).

[HKD+16] T. Heller, H. Kaiser, P. Diehl, D. Fey, M. A. Schweitzer. “Closing the performance gap
with modern c++”. In: International Conference on High Performance Computing.
Springer. 2016, pp. 18–31 (cit. on p. 31).

[HKI13] T. Heller, H. Kaiser, K. Iglberger. “Application of the ParalleX execution model to
stencil-based problems”. In: Computer Science-Research and Development 28.2-3
(2013), pp. 253–261 (cit. on p. 31).

[HKSF13] T. Heller, H. Kaiser, A. Schäfer, D. Fey. “Using HPX and LibGeoDecomp for
scaling HPC applications on heterogeneous supercomputers”. In: Proceedings of the
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems. ACM.
2013, p. 1 (cit. on p. 31).

[HLH+18] T. Heller, B. Lelbach, K. Huck, J. Biddiscombe, P. Grubel, A. Koniges, M. Kretz,
D. Marcello, D. Pfander, A. Serio, J. Frank, G. Clayton, D. Pflüger, D. Eder, H. Kaiser.
“Harnessing Billions of Tasks for a Scalable Portable Hydrodynamic Simulation of
the Merger of Two Stars”. In: International Journal of High Performance Computing
Applications (IJHPCA) (2018). submitted (cit. on pp. 13, 31).

[Kat16] M. P. Katz. “White Dwarf Mergers on Adaptive Meshes”. PhD thesis. State University
of New York at Stony Brook, 2016 (cit. on pp. 13, 14).

[KBS09] H. Kaiser, M. Brodowicz, T. Sterling. “Parallex an advanced parallel execution
model for scaling-impaired applications”. In: Parallel Processing Workshops, 2009.
ICPPW’09. International Conference on. IEEE. 2009, pp. 394–401 (cit. on p. 31).

[KCM+17] K. Kadam, G. C. Clayton, P. M. Motl, D. C. Marcello, J. Frank. “Numerical Simula-
tions of Close and Contact Binary Systems Having Bipolytropic Equation of State”.
In: Proceedings of the American Astronomical Society (AAS). meeting 229, art. id
433.14. http://adsabs.harvard.edu/abs/2017AAS...22943314K. Grapevine, Texas,
Country, 2017 (cit. on p. 13).

[KHA+14] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, D. Fey. “Hpx: A task based pro-
gramming model in a global address space”. In: Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models. ACM. 2014,
p. 6 (cit. on p. 31).

64

https://doi.org/https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/https://doi.org/10.1016/0021-9991(87)90140-9
http://www.sciencedirect.com/science/article/pii/0021999187901409
http://www.sciencedirect.com/science/article/pii/0021999187901409
http://adsabs.harvard.edu/abs/2017AAS...22943314K

Bibliography

[KL12] M. Kretz, V. Lindenstruth. “Vc: A C++ library for explicit vectorization”. In: Software:
Practice and Experience 42.11 (2012), pp. 1409–1430 (cit. on pp. 32, 33).

[KMF+16] K. Kadam, P. M. Motl, J. Frank, G. C. Clayton, D. C. Marcello. “A Numerical
Method for Generating Rapidly Rotating Bipolytropic Structures in Equilibrium”.
In: Monthly Notices of the Royal Astronomical Society (MNRAS) 462.2 (2016).
http://adsabs.harvard.edu/abs/2016MNRAS.462.2237K, pp. 2237–2245. issn:
0035-8711. doi: 10.1093/mnras/stw1814 (cit. on p. 13).

[Kre+15] M. Kretz et al. “Extending C++ for explicit data-parallel programming via SIMD
vector types”. In: (2015) (cit. on p. 33).

[KZC+16] M. P. Katz, M. Zingale, A. C. Calder, F. D. Swesty, A. S. Almgren, W. Zhang. “White
dwarf mergers on adaptive meshes. i. methodology and code verification”. In: The
Astrophysical Journal 819.2 (2016), p. 94 (cit. on p. 14).

[Mag17] K. Maguire. “Type Ia Supernovae”. In: Handbook of Supernovae. Ed. by A. W. Alsabti,
P. Murdin. Cham: Springer International Publishing, 2017, pp. 293–316. isbn: 978-3-
319-21846-5. doi: 10.1007/978-3-319-21846-5_36. url: https://doi.org/10.
1007/978-3-319-21846-5_36 (cit. on p. 13).

[Mar17] D. C. Marcello. “A Very Fast and Angular Momentum Conserving Tree Code”. In:
The Astronomical Journal 154.3 (2017), p. 92. url: http://stacks.iop.org/1538-
3881/154/i=3/a=92 (cit. on pp. 13, 19, 23).

[MCML15] E. J. Montiel, G. C. Clayton, D. C. Marcello, F. J. Lockman. “What Is the Shell
Around R Coronae Borealis?” In: Astronomical Journal (AJ) 150.1, art. id 14 (2015).
http://adsabs.harvard.edu/abs/2015AJ....150...14M. issn: 0004-6256. doi:
10.1088/0004-6256/150/1/14 (cit. on p. 13).

[MKC+ew] D. C. Marcello, K. Kadam, G. C. Clayton, J. Frank, H. Kaiser, P. M. Motl. “Introducing
Octo-tiger/HPX: Simulating Interacting Binaries with Adaptive Mesh Refinement
and the Fast Multipole Method”. In: Proceedings of Science (under review) (cit. on
pp. 13, 17, 18, 20, 21, 23, 24).

[PAD+98] S. Perlmutter, G. Aldering, M. Della Valle, S. Deustua, R. Ellis, S. Fabbro, A. Fruchter,
G. Goldhaber, D. Groom, I. Hook, et al. “Discovery of a supernova explosion at half
the age of the Universe”. In: Nature 391.6662 (1998), p. 51 (cit. on p. 13).

[PCM+16] A. Pohl, B. Cosenza, M. A. Mesa, C. C. Chi, B. Juurlink. “An evaluation of current
SIMD programming models for C++”. In: Proceedings of the 3rd Workshop on
Programming Models for SIMD/Vector Processing. ACM. 2016, p. 3 (cit. on pp. 32,
33).

[PDM+18] Pfander, Daiß, Marcello, Kaiser, Pflüger. “Accelerating Octo-Tiger: Stellar Mergers
on Intel Knights Landing with HPX”. In: 2018 (cit. on pp. 13, 14, 19, 22, 36, 61).

[RFC+98] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich,
R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, et al. “Observational evidence
from supernovae for an accelerating universe and a cosmological constant”. In: The
Astronomical Journal 116.3 (1998), p. 1009 (cit. on p. 13).

[Sod15] A. Sodani. “Knights landing (knl): 2nd generation intel® xeon phi processor”. In:
Hot Chips 27 Symposium (HCS), 2015 IEEE. IEEE. 2015, pp. 1–24 (cit. on p. 35).

65

http://adsabs.harvard.edu/abs/2016MNRAS.462.2237K
https://doi.org/10.1093/mnras/stw1814
https://doi.org/10.1007/978-3-319-21846-5_36
https://doi.org/10.1007/978-3-319-21846-5_36
https://doi.org/10.1007/978-3-319-21846-5_36
http://stacks.iop.org/1538-3881/154/i=3/a=92
http://stacks.iop.org/1538-3881/154/i=3/a=92
http://adsabs.harvard.edu/abs/2015AJ....150...14M
https://doi.org/10.1088/0004-6256/150/1/14

[Tho80] K. S. Thorne. “Multipole expansions of gravitational radiation”. In: Rev. Mod.
Phys. 52 (2 Apr. 1980), pp. 299–339. doi: 10.1103/RevModPhys.52.299. url:
https://link.aps.org/doi/10.1103/RevModPhys.52.299 (cit. on p. 19).

[Web84] R. Webbink. “Double white dwarfs as progenitors of R Coronae Borealis stars and
Type I supernovae”. In: The Astrophysical Journal 277 (1984), pp. 355–360 (cit. on
p. 13).

[WKH15] M. Wong, H. Kaiser, T. Heller. “Towards Massive Parallelism (aka Heterogeneous
Devices/Accelerator/GPGPU) support in C++ with HPX”. In: (2015) (cit. on p. 31).

All links were last followed on March 17, 2018.

https://doi.org/10.1103/RevModPhys.52.299
https://link.aps.org/doi/10.1103/RevModPhys.52.299

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Related Works
	1.2 Structure of this Work

	2 Octo-Tiger
	2.1 Hydrodynamics Solver
	2.2 Gravity Solver
	2.3 Optimized Gravity Solver

	3 Parallelism Libraries
	3.1 HPX - A High Level Runtime Framework for Local and Distributed Task Parallelism
	3.2 Vc - A High Level Library for Data-Level Parallelism

	4 Octo-Tiger on Intel Knights Landing
	4.1 Vectorized FMM Interaction Kernels Using an Interaction List
	4.2 Vectorized FMM Interaction Kernels using a Stencil-based Approach
	4.3 Implementation of the Stencil FMM Interaction Kernels
	4.4 Further optimizations
	4.5 Overview over the Stencil FMM Interaction Kernels

	5 Octo-Tiger's FMM in a Heterogeneous Environment
	5.1 Basic Version
	5.2 Hetereogenous Version
	5.3 Scheduler Parameters

	6 Results
	6.1 Scenarios
	6.2 Toolchain
	6.3 Platforms
	6.4 Performance Comparison between the Stencil FMM Kernels and the Interaction List FMM Kernels
	6.5 GPU Tests

	7 Conclusion and Future Work
	Bibliography

