
Implementation of a backend to
ISPC using HPX

Bachelorarbeit

Julian Wolf

Friedrich-Alexander Universität Erlangen-Nürnberg
Chair of Computer Science 3 (Computer Architecture)

July 13, 2016

A B S T R A C T

The following thesis first takes a closer look at parallelisation of pro-
grams in combination with hardware architecture like multiprocess-
ing and vector instruction sets. Classifications and differences are
explained, as well as some popular solutions. The two main software
components, ISPC and HPX, will also be introduced and explained
here. Afterwards the implementation of a HPX backend for the asyn-
chronous task system interface of ISPC is explained and two different
versions developed which later get compared using different test pro-
grams like a simple benchmark, a Mandelbrot set and a sobel image
processing edge detection filter. Tests and benchmarks show that the
HPX task system backend is an equal option to other solutions like
pthreads or OpenMP.

2

C O N T E N T S

1 introduction 4

2 background 5

2.1 Parallelisation . 5

2.2 Classification of programs 5

2.3 Problem description . 6

2.4 HPX . 7

2.5 Intel R© SPMD Program Compiler (ISPC) 8

2.6 Combining ISPC and HPX 9

3 implementation 10

3.1 ISPC task parallelism runtime requirements 10

3.2 ISPC provided task system 11

3.3 HPX extension . 11

4 results 14

4.1 Tests and performance measurement 15

4.1.1 Benchmark . 15

4.1.2 Mandelbrot set 18

4.1.3 Sobel filter . 19

4.2 Interpretation . 21

5 conclusion 24

6 bibliography 26

3

1
I N T R O D U C T I O N

Due to development of computer architecture new programming mod-
els and parallelisation play a more and more important role and have
a big impact on computing performance. In the following thesis two
major parallelisation categories, parallelisation through multiprocess-
ing and vectorisation, will be brought together.

After covering the necessary background about parallelisation and
categorisation, the components of this thesis are looked at more closely.
The ISPC compiler offers a programming model for easy vectorisa-
tion, but also offers an open interface for task based (multiprocess-
ing) parallelism. HPX is a library for multiprocessing and distributed
computing. The goal is to implement and test a HPX based backend
and task system for the ISPC compiler. In the course of the thesis
two different versions are implemented, one using a HPX parallel
algorithm and one using HPX asynchronous tasks.

Afterwards this task system is tested with a theoretical benchmark,
a Mandelbrot set and an image processing edge detection filter and
compared to already existing backends using OpenMP and pthreads.
While one of the HPX implementations performs significantly slower,
the other version performs equally to the existing backends and pro-
vides a good new option.

4

2
B A C K G R O U N D

2.1 parallelisation

In the development of computer architecture, increased processing
unit performance was achieved by increasing the clock rate for a very
long time. Due to physical boundaries there are limits for further
increasing processor clock rate, therefore more speedup can only be
achieved by more processing units and parallelisation of applications.

Another factor playing a role here is the so called Polack’s rule.
This rule states that the processing capacity grows proportionally to
the square root of the increased complexity (number of transistors,
area)[4]. This rule applied backwards means that with half the com-
plexity of a processor it still has about 70% of the computing power.
So while on the one hand neither increasing the clock rate nor increas-
ing processor size and complexity are reasonable in a large scale and
on the other hand with big progress in manufacturing and technol-
ogy, development for modern processors went to multicore architec-
ture with several smaller processing units and parallelised programs.

2.2 classification of programs

With development of parallelisation several different approaches came
up and therefore a classification of programs was promoted. The clas-
sification is based on data and instruction streams with a difference
in a single or multiple streams. So there can be single instruction
single data (SISD), single instruction multiple data (SIMD), multiple
instruction single data (MISD) and multiple instruction multiple data
(MIMD). Additionally a separation between the number of programs
used for executing on multiple data can be made, single program mul-
tiple data (SPMD) and multiple program multiple data (MPMD)[5]

One approach is vectorising programs, loading multiple data and
executing the same instruction(s) on them. This is a typical SIMD
approach and very common within modern processors (e.g Intel SSE,
AVX). Another scenario is running several instances of a single pro-
gram in parallel, which is called SPMD (single program multiple
data).

Vectorisation (SIMD) is often used through specific compiler in-
structions, which makes this type of parallelisation harder to use

5

2.3 problem description

and not very portable. Single program multiple data approaches on
the other hand usually come with their own programming concept
and are more portable and flexible. This classification is also used
throughout this thesis as SIMD and SPMD play a big role.

2.3 problem description

Modern day computing is in need of parallelisation to further im-
prove program performance and adapt to changing hardware tech-
nology. With multicore architecture becoming more and more impor-
tant as well as rapidly growing number of processing units within
systems, it is necessary to adjust the software architecture. For graph-
ics processing on GPUs, where more processing units are available
and used than in CPUs, new programming models are already avail-
able and widespread. CUDA and OpenCL are examples for this. For
CPUs exist many concepts and ideas on how to achieve good paral-
lelism as well, but this field still offers a lot of room for improvement.

On the one hand, parallelisation through multiprocessing gives a
lot of performance and can be somewhat easily achieved through a
variety of existing libraries. But the speedup of multiprocessing also
depends a lot on which parts of a program can be parallelised and
how big the serial part of a program is. Because the bigger the serial
part of a program, and that might not always be changeable, the less
influence parallelisation of the rest of the program has on the overall
speedup.

On the other hand, if big parts of the program can be parallelised,
the resulting speedup will be very good. Gene Amdahl presented a
law, named after him (Amdahl’s law), which discusses the relation-
ship between serial and parallel part of a program and resulting pos-
sible and theoretical speedup. The law can be displayed as a formula

s =
1

rs +
rp
n

where s is the theoretical speedup, rs is the sequential part, rp the
parallel part and n the speedup which can be reached through paral-
lelisation of the parallel part. In sum rs and rp must equal 1[3]. The
speedup is relevant for all types of parallelisation, be it vectorisation
with SIMD or multiprocessor parallelisation, and therefore important
as both types will be discussed later.

SIMD parallelism and vectorisation, as already quickly introduced
earlier, are still an area that often isn’t used to it’s full potential.
While the programmer has a lot of support for thread programming
through libraries, SIMD programming (vectorisation) often is hand-
written via assembler or compiler provided SIMD intrinsics. The ma-
jor drawbacks of this approach are clearly that code is not portable
without adapting, as different hardware has different SIMD capabili-

6

2.4 hpx

ties and, related, the code is harder to maintain due more difficult
readability, required expertise and more necessary changes. And
while the major C/C++ compilers do have functionality implemented
for auto-vectorisation, e.g. for loops, it’s success depends a lot on fac-
tors like loop or data layout[9]. Therefore a more abstract approach,
that doesn’t rely on the compiler and auto-vectorisation and gives
more freedom and independence of hardware, is needed in the area
of SIMD programming. One approach, the Intel R© SPMD Program
Compiler will be discussed in section 2.5.

2.4 hpx

HPX, which defines itself as a ”general purpose C++ runtime system
for parallel and distributed applications of any scale”[8], tries to pro-
vide a new model that solves many problems in current and future
high performance computing. HPX is committed to provide a solu-
tion that does focus on scalability, programmability, performance porta-
bility, resilience and energy efficiency[8]. HPX is a C++ library (within
the C++11 standard) and provides the user with a model for decen-
tralised, task based and scalable parallelism.

Any approach for a scalable solution in this area will have to face
several obstacles on this way, the so called SLOW factors: Starvation,
latency, overheads and waiting for contention resolution[8]. The next para-
graph intends to give a quick overview over the design principles
behind HPX to tackle the SLOW factors[8].

• Instead of focusing on latency avoidance, which can never be
totally achieved, HPX focuses on using latencies for other work,
means latency hiding.

• Use of lightweight thread and fine grained parallelism instead
of heavyweight threads. This results in shorter context switches
and supports the goal of hiding latencies which helps with bet-
ter system utilisation.

• Rediscovering constrained based synchronisation as a replace-
ment for global barriers as they often can be found in modern
systems to keep the parallel part as big as possible and reduce
the sequential and slower part to a bare minimum.

• In big computing clusters data locality is very important and
HPX targets this area with a global and uniform address space
and more dynamic data distribution among the nodes.

• Moving as little as possible between nodes, means to move work
to the data instead of (big amounts of) data to the computing
nodes.

7

2.5 intel R©spmd program compiler (ispc)

• HPX also focuses on message driven computation, which works
with asynchronous messages and work queues instead of using
message passing, which requires a lot of synchronisation for
passing messages.

2.5 intel R©spmd program compiler (ispc)

The Intel R© SPMD Program Compiler (ISPC) is an open-source (BSD-
license) compiler focusing on single program multiple data (SPMD)
programming. ISPC compiles a C-based language which supports
SPMD programming concepts to use the SIMD units on the CPUs.
Besides of SIMD level vectorisation, ISPC also supports task paral-
lelism to make use of multicore architecture. ISPC uses the LLVM
compiler infrastructure for code generation and optimisation.

An ISPC design goal was to create a compiler for modern SIMD
CPUs which does not only rely on auto-vectorisation for a sequential
language during compile time, but also to provide parallel semantics
and a programming model for complex control flows.

Executing multiple instances of a single program in parallel, SPMD,
which is similar to concepts used by GPU shaders or CUDA, are now
used by ISPC. Those concurrent program instances are bundled in a
group, called gang.The number of instances within a gang is deter-
mined at compile time for the hardware but not bigger than twice the
size of the hardware’s SIMD width. The gang is also running in the
same context and thread as the application code and does not create
more threads or do context switches.

ISPC also tries to create performing code from loops or branched
control flows by allowing different members of a gang (program in-
stances) to execute different paths. It also offers a lot of options to the
programmer to control behaviour of those parallel loops, that might,
depending on the situation and code, be used to further increase per-
formance. Therefore ISPC offers, besides a parallel for-loop, addi-
tional loops like foreach, foreach tiled, foreach active, foreach unique.

ISPC’s SPMD programing model also includes the concept of asyn-
chronous tasks that can be executed asynchronously on different threads,
which can be distributed among processing units. This equates to the
fork-join concept, as the tasks act independently and get joined ex-
plicitly or implicitly when leaving the function which launched the
tasks. Tasks can be launched in up to three dimensions and each
task/thread can be identified via an unique ID. With this concept it
is possible to launch a number of tasks, which then, depending on
problem size, task count and own task identification, calculate a part
of the big problem. This is very similar to the model used in CUDA
for NVIDIA graphic card programming, which also provides three di-
mensions of thread hierarchy and something similar to tasks, called
kernels, that get executed in parallel[1].

8

2.6 combining ispc and hpx

While ISPC doesn’t provide a task system or thread-pool itself, it
offers an easy to use interface for launching and syncing tasks which
can be used with any backend[2][10].

The programming model of ISPC is also a big difference to other
SIMD libraries, like Vc. While Vc also focuses on vectorising instruc-
tions and on abstracting assembler code and compiler intrinsics, it
only provides a layer to C/C++ code without adding new concepts.
It also doesn’t touch multiprocessor support, as this is already avail-
able via other libraries like OpenMP. So Vc only focuses on making
SIMD programming easy, accessible and portable without changing
major concepts for the programmer. A very good example for the
layer of abstraction provided by Vc is the introduction of data types
like float v (a float vector) which replace the intrinsics that depend on
the size of registers. Both approaches certainly have their advantages
and disadvantages and therefore use cases for both can be found[9].

The details and requirements on how a backend for the ISPC task
system will be discussed later in this paper. Goal of this thesis is to
create such a backend for ISPC using the HPX framework.

2.6 combining ispc and hpx

As discussed in the previous part, the ISPC language offers support
for task based parallelism and HPX is a programming model with
heavy focus on task based parallelism as well. Therefore the idea
of using the advantages of the ISPC language and compiler to cre-
ate tasks which can then be distributed and scheduled through the
HPX system as backend. Gladly ISPC offers a programming inter-
face which makes it easy to implement or attach task systems as a
backend. The next chapter will have a closer look at the interface and
implementation.

9

3

I M P L E M E N TAT I O N

3.1 ispc task parallelism runtime requirements

ISPC offers task parallelism through launch and sync statements with-
out specifying the runtime or task system behind it. To make use of
the task parallelism three functions must be provided and linked as
C functions. This gives a big degree of freedom for different backend
systems and own task management implementations. In this thesis
HPX was included as a backend system which offers an easy to use
and very flexible environment and support for distributed comput-
ing. The three functions that need to be implemented and linked for
ISPC’s launch and sync statements are bound to the following signa-
ture:

1 void *ISPCAlloc(void **handlePtr , int64_t size , int32_t

alignment);

2 void ISPCLaunch(void **handlePtr , void *f, void *data ,

int count0 , int count1 , int count2);

3 void ISPCSync(void *handle);

Listing 3.1: ISPC task system runtime requirements

The first argument to all three functions is a unique handle which
helps the task system distinguish tasks from different calling func-
tions. The ISPCAlloc function only serves the purpose of allocating
memory of a specified size. The ISPCLaunch function is used to
launch tasks. For this it is provided with a function pointer f, ar-
guments to that function data as well as the number of tasks to be
launched for up to three possible dimensions count0, count1, count2.
The function signature for the task looks as follows:

1 void (* TaskFuncPtr)(void *data , int threadIndex , int

threadCount , int taskIndex , int taskCount , int

taskIndex0 , int taskIndex1 , int taskIndex2 , int

taskCount0 , int taskCount1 , int taskCount2);

Listing 3.2: ISPC task function signature

10

3.2 ispc provided task system

The arguments here are for providing a single task with informa-
tion about the numbers of threads and tasks and its own position.

The function ISPCSync as third and last function to be implemented
only expects a handle as argument and only waits for all tasks to
finish before exiting.

3.2 ispc provided task system

ISPC already has a implementation for those functions and also pro-
vides a good structured and easy to extend task system. Before going
deeper into how it got extended, first a look on the already existing
structure1. Part of it is a structure called TaskInfo, which saves ev-
ery relevant information for a task, among them the function f to be
called and the arguments. There is also a class TaskGroupBase which
provides basic functions like the constructors, destructors and alloca-
tion of memory for a group of tasks. This task then can easily be
extended by any type of backend through a class called TaskGroup
which provides backend specific Launch and Sync functions.

So the implemented ISPC functions only need to initialise the task
system if necessary, assign TaskInfo information and call the corre-
sponding TaskGroup::Launch and TaskGroup::Sync statements. There
are already implementations for several different backends like OpenMP
or pthreads and those now got extended with one for HPX.

3.3 hpx extension

During the development two different ideas came up on how to create
and distribute asynchronous tasks with HPX. Both shall be explained
here, including basic code, and be compared as well as analysed for
performance later.

The first idea relies on a basic loop and the hpx::async function for
creating the asynchronous jobs. This has the advantage of being a
straightforward and easy solution at the disadvantage of having a
future object per task creation and synchronising all tasks via all the
futures later. The implementation here uses a vector of futures for
storing the asynchronous tasks return values.

1 futures.push_back(hpx:: async(ti ->func , ti ->data ,

threadIndex , threadCount , ti ->taskIndex ,

ti->taskCount (), ti ->taskIndex0 (),

ti->taskIndex1 (), ti ->taskIndex2 (),

ti->taskCount0 (), ti ->taskCount1 (),

ti->taskCount2 ()));

Listing 3.3: Launching asynchronous tasks

1 https://github.com/ispc/ispc/blob/master/examples/tasksys.cpp

11

3.3 hpx extension

For the synchronisation an extended operation for futures which is
offered by the HPX library is used and allows easy access to several
ways how to handle futures. Here the hpx::wait all function is used to
synchronise the tasks.

1 hpx:: wait_all(futures);

2 futures.clear();

Listing 3.4: Synchronising tasks

The second approach uses a HPX function for each which basically
is a parallel loop performing some action over a number of elements.
This has the advantage that the function returns exactly one future
object for synchronisation and also offers a wider range of flexibility
due to selectable execution policies. Those execution policies can be
anything from sequential to parallel and asynchronous and can even
be extended for other or special purposes. The following piece of
code shows the part of launching tasks using the parallel loop and
storing the future object.

1 future = for_each(

2 par(task),

3 boost ::begin(range), boost::end(range),

4 [=](int i){

5 TaskInfo *ti = GetTaskInfo(baseIndex + i);

6 int threadIndex = i;

7 int threadCount = count;

8 ti ->func(ti ->data , threadIndex , threadCount ,

ti ->taskIndex , ti ->taskCount (),

ti ->taskIndex0 (), ti ->taskIndex1 (),

ti ->taskIndex2 (), ti ->taskCount0 (),

ti ->taskCount1 (), ti ->taskCount2 ());

9 });

10 }

Listing 3.5: Launching asynchronous tasks

In this case the synchronisation is very easy as there is only one
future object to wait for.

1 future.wait();

Listing 3.6: Synchronising tasks

The index based parallel for-loop used here is a feature introduced
by HPX to overcome some weaknesses traditional parallel loops have,
especially in regards of indexes. Therefore HPX provides a collection
of parallel algorithms, like for each, and gives the programmer a very
powerful and generic tool. With the use of several execution policies

12

3.3 hpx extension

the parallel loop can also be customised depending on the situation
and use case. HPX offers both sequential and parallel execution poli-
cies, but also a task based asynchronous one, par(task), which is used
above to launch the task function asynchronously[7].

The only requirement for using the HPX task system for ISPC is,
that the main program from which the task system is used has started
and initialised the HPX runtime. In all following examples the code
of the main program got extended by a conditional include statement
which is activated during compile time and automatically uses the
main-function as entry point for HPX, but launching HPX with cus-
tom functions is possible as well.

1 #ifdef ISPC_USE_HPX

2 #include <hpx/hpx_main.hpp >

3 #endif

Listing 3.7: Initialise HPX environment with start of main-function

13

4

R E S U LT S

To compare both variants with each other as well as with other, al-
ready implemented, backends for the ISPC task system several tests
were run to generate comparable results for both benchmarking in
relation to size of tasks as well as number of tasks and real-life pro-
grams.

The duration of the ISPC function from call to return is measured
in milliseconds. The implementation for the timing function used is
implemented and distributed by Intel with ISPC1.

As the main part of this thesis is about CPU parallelisation and
the tests are also CPU-bound, all the tests were run on different plat-
forms to provide comparability. Differences are not only by number
of cores or hardware threads, but also by available vector instruc-
tions like AVX/SSE. Therefore the results can hardly be compared
to each other in absolute numbers, but only within one platform.
The comparison between platforms can only show a general trend.
As the already existing backend implementations used here, using
OpenMP and pthreads, determine the number of created operating
system threads themselves but HPX has this configurable through a
program parameter –hpx:threads, the number of created threads used
for the following tests always is equal to the number of available pro-
cessing units by specifying all. So for example on the Intel i7 Skylake
processor with four cores and two threads per core, eight threads
were used and on the AMD Opteron with two sockets and two cores
per socket four threads were used.

Three different hardware platforms were used for the following
tests and measurements. One, an Intel i7 Skylake processor with four
cores and two threads per core, an Intel Pentium N3540 notebook
processor, and an AMD Opteron. All details and specifications can
be found in table 1.

1 https://github.com/ispc/ispc/blob/master/examples/timing.h

14

4.1 tests and performance measurement

Model name Intel i7-6700K Intel N3540 AMD Opteron 2216 HE
Architecture x86 64 x86 64 x86 64

CPU(s) 8 4 4

Thread(s) per core 2 1 1

Core(s) per socket 4 4 2

Socket(s) 1 1 2

CPU max MHz 4200.0000 2665.6001 2399.998

L1d cache 32K 24K 64K
L1i cache 32K 32K 64K
L2 cache 256K 1024K 1024K
L3 cache 8192K

Table 1: CPU specifications

4.1 tests and performance measurement

4.1.1 Benchmark

The first series of tests is a very simple benchmark that launches n
tasks where each tasks calculates each reciprocal for m (pseudo-) ran-
dom numbers. As both variables, size of a task and amount of tasks,
are interesting the tests were split into three parts, with constant task
size and increased task count, constant task count and increased task
size and last with both increased task size and count. For the first two
parts linear graphs are expected due to linear increase of parameters,
in the last case polynomial or exponential growth is expected. In the
following part the results shall be displayed, discussed and analysed.

The first figure 1, which displays the graphs for a constant task
count of 1000 and a variable task size up to 100000, shows that the
backend implementation starting tasks via hpx::async and storing all
returned futures in a vector and synchronising with hpx::wait all, which
shall be referenced as version 1 from here on, is on both a Intel N3540

with four cores and a Intel i7 with four cores and hyperthreading
about on the same level as the already available implementations for
OpenMP and pthreads. A significant difference can be made out
between the two different HPX implementations, especially on the
slower processor where the second version is several times slower
than the first one. On the significantly more powerful i7 processor
the difference is a lot smaller, but version 2 is still clearly slower.

Figure 2 shows the test results for a constant task size and a vari-
able amount of tasks, up to 100000. The first observation which can
be made here is, that on the slower N3540 processor the second ver-
sion of HPX is by far slower than all other implementations, while on
the faster i7 processor the first implementation is slower. Another ob-
servation which can be made here is that both HPX implementations

15

4.1 tests and performance measurement

(a) Intel N3540 (b) Intel i7

(c) AMD Opteron

Figure 1: Fixed task count (1000), task size variable

are, on all tested processors, slower than the OpenMP and pthread
implementations.

The last test case in this benchmark, which can be found in figure
3, shows the results for both the values for task size and task count
being linearly increased up to 50000. As expected, all four tested
implementations show polynomial growth. On the i7 and Opteron
processor, the second HPX implementation is slower than the other
three variants. On the N3540 the second HPX implementation is far
off from all other options and significantly slower. The other three
backends gave very similar results here.

Due to some hints that the second HPX version with the parallel
for-each algorithm being slower with smaller and more fine grained
tasks a set of this test was also run to further inspect this behaviour.
For this, the program was run several times with different amount
of tasks and with bigger task sizes (up to 300000 calculations on the
i7 processor). And, as already indicated and therefore expected, the
behaviour could be partially confirmed. On the Intel i7 processor all
task system backends behaved very similar up to around 800 tasks,
then the parallel algorithm HPX backend, the second version, started
to become significantly slower than the three other versions.

On the weak Intel N3540 processor on the other hand this be-
haviour could not be reproduced, the second HPX version behaved
worse even in situations with small amounts of tasks. The task sizes

16

4.1 tests and performance measurement

(a) Intel N3540 (b) Intel i7

(c) AMD Opteron

Figure 2: Fixed task size (1000), task count variable

(a) Intel N3540 (b) Intel i7

(c) AMD Opteron

Figure 3: Both task size and count variable

17

4.1 tests and performance measurement

(a) Intel i7 (b) Intel N3540

Figure 4: Comparison with small task counts and big tasks

Figure 5: Mandelbrot

used here were significantly smaller and adjusted to the computing
capability of the processor. Both observations can be found in figure
4. The graphs are scaled accordingly, the i7 processor graph is scaled
to the point where the overhead of too fine task granularity can be
observed, the N3540 graph is scaled to show that the overhead is too
big from the beginning.

4.1.2 Mandelbrot set

The next series of tests were run with an already available implemen-
tation of the Mandelbrot set using ISPC and tasks and which is also
shipped with ISPC as an example for this. The Mandelbrot set im-
plementation allows to set the scale, and with that the size of the
computed image and also the amount of work and tasks to be set as
a parameter. The default size is 1536x1024 which is then scaled with
a parameter (seen on x-axis in figure 6) and rounded. The task count
is defined by a quarter of the height. A resulting Mandelbrot image
can be seen in figure 5.

All results of the Mandelbrot set, as can be seen in figure 6, pro-
duce polynomial curves (the HPX version 2 on the i7 having an out-

18

4.1 tests and performance measurement

(a) Mandelbrot on Intel i7 (b) Mandelbrot on Intel N3540

(c) Mandelbrot on AMD Opteron

Figure 6: Mandelbrot set using ISPC tasks

lier part). The second HPX version is here under all circumstances
significantly slower than the other three tested variants and shows
way faster growth. The first HPX version, the OpenMP version and
the pthread version on the other side show very similar results again
and lay almost on top of each other.

Very interesting to see here is a jump in the graph of the second
version of the HPX implementation on the i7 processor. Until a scale
factor of six, the performance is similar to the other three implemen-
tations, after that it is significantly slower and the graph grows faster.
This goes hand in hand with the final comparison of the previous
benchmarking test which also shows a jump when the amount of
tasks used exceeds a certain threshold.

4.1.3 Sobel filter

As a last test using ISPC tasks an image processing sobel filter for
edge detection was implemented. The algorithm calculates the new
value of a single pixel by applying two kernels, one for x- and one for
y-direction, to the surrounding pixels.

The ISPC function creates n tasks, with n being the number of rows
the input image has. Each task then uses the taskIndex variable to
identify itself and find the row it is responsible for. Afterwards the
task iterates through the row using the ISPC for each loop and applies
the sobel kernel on every single element in the row. The sobel filter
main program uses the OpenCV graphic processing library for input

19

4.1 tests and performance measurement

(a) beach, 4608x3456, 15.9MP (b) parrot, 4608x3456, 15.9MP

(c) hubble, 15852x12392, 196.4MP
(d) earth, 8000x8000, 64MP

Figure 7: Sobel filter input images

and output of images, but not for actually processing the image, this
part is implemented in ISPC code.

For this test four different images with a significant resolution were
used, two smaller ones, parrot and beach, with a resolution of 15.9MP
and two bigger ones, earth2 with 64MP and hubble3 with 196.4MP.
The input images and dimensions can be seen in figure 7. As the
sobel filter implementation with ISPC used here creates one task per
row, the amount of tasks depends one the image dimensions. As the
focus of this thesis lies in the implementation of the HPX backend and
comparing it to other, previous implementations, it was not the goal
to create an ideal implementation of the sobel filter. Better solutions,
especially considering and finding the perfect amount and size of
tasks, can certainly be found. The produced output images are shown
in figure 8.

As can be observed in figure 9, on the Intel N3540 processor the sec-
ond HPX implementation was significantly slower by a factor greater
than three with all four images. All other three backend implemen-
tations performed very similar and did not show any significant dif-
ferences in performance. On the Intel i7 processor, which can be
seen in figure 10, the second HPX implementation was slower with
all four test cases as well, but the difference is a lot smaller and less
significant. The other three implementations show small and varying
differences, but considering how small the differences are they can be

2 Credit: NASA, http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA18033

3 Credit: NASA, http://hubblesite.org/newscenter/archive/releases/2006/10/image/a/

20

4.2 interpretation

(a) beach, 15.9MP image (b) parrot, 15.9MP image

(c) hs, 196.4MP image
(d) earth, 64MP image

Figure 8: Sobel filter output images

seen as equal and it’s not possible to make conclusions based on the
available data.

4.2 interpretation

The first result from the previous tests is, that the second HPX version
is in almost any test case slower than the first version or the other two
already existing versions using OpenMP and pthreads. The interpre-
tation and reasons for this are more complex though, as a variety of
factors play a role here. With a first factor definitely being the process-
ing unit and it’s capabilities. On the rather slow Intel N3540 proces-
sor the first HPX implementation was significantly slower, often by a
multiple, under almost all circumstances. The other three tested im-
plementations were very close to each other, only the implementation
using the HPX parallel for-each algorithm was a real outlier here. As
the graphs are way closer to each other on the other tested CPUs, it
indicates that the overhead has bigger impact on weaker processors.

A second observation is the role of the number of tasks. This could
be observed very good on the Intel i7 processor running the Man-
delbrot set and running the benchmark program with very big tasks.
On the Mandelbrot set graph it can be seen that until a scale of six,
the second HPX solution performs similar to the other implementa-
tions, but then a big jump significantly drops the performance. In the
benchmark this same jump can be seen when keeping the task size
constant and big, and slowly increasing the amount of tasks. The
point the jump happens here is around 800 tasks. Why this can only

21

4.2 interpretation

(a) Intel N3540, 15.9MP image (b) Intel N3540, 15.9MP image

(c) Intel N3540, 196.4MP image (d) Intel N3540, 64MP image

Figure 9: Sobel filter on Intel N3540

(a) Intel i7, 15.9MP image (b) Intel i7, 15.9MP image

(c) Intel i7, 196.4MP image (d) Intel i7, 64MP image

Figure 10: Sobel filter on Intel i7

22

4.2 interpretation

been seen on the i7 processor and not on the others can, without
further investigation, only be speculated. But this new Skylake pro-
cessor with a 8MB L3 cache might be able to cover up some overhead
latencies up to a certain point. Higher task count also has impact on
the first HPX version, as can be seen in figure 2. Both HPX versions
perform worse than the OpenMP and pthreads solution on all tested
CPUs in this case, on the i7 processor the first HPX version even per-
forms worse than the second version. This is the only test where this
can be seen, so it seems like the factor CPU is playing a big role here,
too. The relationship between task granularity and performance in
HPX was already topic of a work by Grubel, Kaiser, Cook and Serio
in 2015, with the result being that both very small tasks and very big
tasks having a significant negative impact on execution time due to
big overhead in the first case and bad load balancing and scheduling
in the case of big tasks[6].

While neither HPX backend implementation was able to outper-
form the already existing backends, the first HPX implementation did
perform equally in almost all cases. The only scenarios where a sig-
nificant difference could be noted was with very high task counts and
fine granularity, as can be seen in figure 2. In this case the HPX over-
head decreased performance compared to OpenMP and pthreads.
But considering how easy it is to use ISPC functions from within
a program that might already run HPX and that the performance is
equal in many cases, using a HPX backend for ISPC tasks is a good
option even though no performance gains could be shown.

23

5

C O N C L U S I O N

As discussed in the first part of this thesis, parallelisation is a topic
that involves both writing programs for multiprocessor architectures
and for using vector instructions available in modern processing units
for SIMD parallelisation. While a major focus is on multiproces-
sor parallelisation and a lot of libraries and solutions exist for this,
less attention is payed on SIMD parallelisation which leads to fewer
research or solutions. SIMD parallelisation is often only reached
through compiler intrinsics, which is hard to maintain and hardware
dependent and therefore not portable.

While Vc is a library that offers an additional abstraction layer for
easier and portable vectorisation, ISPC offers a CUDA-like program-
ming concept with multiple program instances (gangs) and also a con-
cept for task based multiprocessor parallelism. ISPC doesn’t specify
the backend design and offers a function interface to attach custom
backends.

In this thesis a backend using the HPX library for parallel and dis-
tributed applications was created. In the process two different ap-
proaches were implemented, one using asynchronous tasks and one
using a HPX parallel algorithm. Both variants were compared with
already existing backend implementations provided by ISPC using
OpenMP and pthreads. To test and compare the backends three dif-
ferent test programs using ISPC tasks were used.

First, a benchmark with both variable task size and task count, sec-
ond a Mandelbrot set program provided by ISPC, and third a sobel
image processing filter for edge detection. The first HPX backend
implementation performed better than the second one in most cases
and similar to the OpenMP and pthreads implementations. For the
overall performance several factors play important roles. Big differ-
ences between used CPUs could be observed, but also the relation-
ship between task size and amount of tasks needs to be considered
for applications. Fine granularity led to bigger overhead in the HPX
backend and therefore worse performance.

In general, the HPX version 1 performed very similar to the already
existing implementations and can be considered equal if a balance
task granularity can be assured. As it is easy to include ISPC code in
C/C++ code using HPX and additionally take advantage of the easy

24

conclusion

to use ISPC task system, which can also be based on HPX, it can be
considered a good option to other popular parallelisation solutions.
The first task system version of HPX was submitted and accepted to
the ISPC Github repository1.

1 https://github.com/ispc/ispc

25

6
B I B L I O G R A P H Y

[1] CUDA C Programming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide. Accessed: 2016-06-08.

[2] Intel R© SPMD Program Compiler User’s Guide. http://ispc.

github.io/ispc.html. Accessed: 2016-04-14.

[3] G. M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of
the April 18-20, 1967, Spring Joint Computer Conference, AFIPS ’67

(Spring), pages 483–485, New York, NY, USA, 1967. ACM.

[4] S. Borkar and A. A. Chien. The future of microprocessors. Com-
mun. ACM, 54(5):67–77, May 2011.

[5] M. J. Flynn. Some computer organizations and their effective-
ness. IEEE Transactions on Computers, C-21(9):948–960, Sept 1972.

[6] P. Grubel, H. Kaiser, J. Cook, and A. Serio. The performance im-
plication of task size for applications on the hpx runtime system.
In 2015 IEEE International Conference on Cluster Computing, pages
682–689, Sept 2015.

[7] H. Kaiser. HPX and C++ Parallel Algo-
rithms. http://stellar-group.org/2015/06/

hpx-and-cpp-parallel-algorithms/, 2015. Accessed: 2016-06-
09.

[8] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey.
HPX – A Task Based Programming Model in a Global Address
Space. In PGAS, 2014.

[9] M. Kretz and V. Lindenstruth. Vc: A c++ library for explicit
vectorization. Software: Practice and Experience, 42(11):1409–1430,
2012.

[10] M. Pharr and W. R. Mark. ispc: A SPMD compiler for high-
performance CPU programming. In InPar, 2012.

26

http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://ispc.github.io/ispc.html
http://ispc.github.io/ispc.html
http://stellar-group.org/2015/06/hpx-and-cpp-parallel-algorithms/
http://stellar-group.org/2015/06/hpx-and-cpp-parallel-algorithms/

	Abstract
	Contents
	Introduction
	Background
	Parallelisation
	Classification of programs
	Problem description
	HPX
	Intel® SPMD Program Compiler (ISPC)
	Combining ISPC and HPX

	Implementation
	ISPC task parallelism runtime requirements
	ISPC provided task system
	HPX extension

	Results
	Tests and performance measurement
	Benchmark
	Mandelbrot set
	Sobel filter

	Interpretation

	Conclusion
	Bibliography

