
ParalleX
A Cure for Scaling Impaired Parallel
Applications

Hartmut Kaiser (hkaiser@cct.lsu.edu)

Tianhe-1A 2.566 Petaflops Rmax

Heterogeneous Architecture:

Å14,336 Intel Xeon CPUs

Å7,168 Nvidia Tesla M2050 GPUs

ÅMore than 100 racks

Å4.04 megawatts

Cetraro Workshop 2011

2

6/28/2011

Technology Demands new Response

Cetraro Workshop 2011

3

6/28/2011

Technology Demands new Response

Cetraro Workshop 2011

4

6/28/2011

Amdahlõs Law

ÅP: Proportion of parallel
 code

ÅN: Number of processors

ρ

ρ ὖ
ὖ
ὔ

Figure courtesy of Wikipedia (http:// en.wikipedia.org/wiki/Amdahl's_law)

Cetraro Workshop 2011

5

6/28/2011

The 4 Horsemen of the Apocalypse: SLOW

ÅStarvation

ÅLatencies

ÅOverheads

ÅW aiting for Contention
 resolution

Cetraro Workshop 2011

6

6/28/2011

Efficiency Factors

ÅStarvation

ſInsufficient concurrent work to maintain high utilization of resources
¶ Inadequate global or local parallelism due to poor load balancing

ÅLatency

ſTime-distance delay of remote resource access and services
¶ E.g., memory access and system-wide message passing

ÅOverhead

ſCritical path work for management of parallel actions and resources

ſWork not necessary for sequential variant

ÅWaiting for contention resolution

ſDelay due to lack of availability of oversubscribed shared resource
¶ Bottlenecks in the system, e.g., memory bank access, and network bandwidth

7

Cetraro Workshop 2011 6/28/2011

Efficiency Factors

ÅStarvation

ſInsufficient concurrent work to maintain high utilization of resources
¶ Inadequate global or local parallelism due to poor load balancing

ÅLatency

ſTime-distance delay of remote resource access and services
¶ E.g., memory access and system-wide message passing

ÅOverhead

ſCritical path work for management of parallel actions and resources

ſWork not necessary for sequential variant

ÅWaiting for contention resolution

ſDelay due to lack of availability of oversubscribed shared resource
¶ Bottlenecks in the system, e.g., memory bank access, and network bandwidth

8

Cetraro Workshop 2011 6/28/2011

A Game Changer

Cetraro Workshop 2011

9

6/28/2011

Adaptive Mesh Refinement (AMR)

6/28/2011 Cetraro Workshop 2011

10

Why Adaptive Mesh Refinement (AMR)

ÅFrom 31 Mar 2010 to 31 Mar 2011 at least
68,394,791 SUôs were dedicated on Teragrid to finite
difference based AMR applications (out of ~1.407
billion SUôs allocated) -- about 5% of runs
ÅNearly all of the publicly available AMR toolkits use

MPI
ÅStrong scaling of AMR applications is typically very

poor
ÅParalleX functionality fits nicely with the AMR

algorithm: global address space, ñwork stealingò,
parallelism discovery, dynamic threads, implicit
load balancing

6/28/2011 Cetraro Workshop 2011

11

Constraint based Synchronization for AMR

Cetraro Workshop 2011

12

6/28/2011

Å Compute dependencies at task
instantiation time

Å No global barriers, uses constraint
based synchronization

Å Computation flows at its own pace
Å Message driven
Å Symmetry between local and

remote task creation/execution

Whatõs ParalleX ?

ÅActive global address space (AGAS) instead of PGAS
ÅMessage driven instead of message passing
ÅLightweight control objects instead of global

barriers
ÅLatency hiding instead of latency avoidance
ÅAdaptive locality control instead of static data

distribution
ÅFine grained parallelism of lightweight threads

instead of Communicating Sequential Processes
(CSP/MPI)
ÅMoving work to data instead of moving data to work

6/28/2011 Cetraro Workshop 2011

13

The Runtime System ð A Game Changer

ÅRuntime system
ſ is: ephemeral, dedicated to and exists only with an application

ſ is not: the OS, persistent and dedicated to the hardware system

ÅMoves us from static to dynamic operational regime
ſExploits situational awareness for causality-driven adaptation

ſGuided-missile with continuous course correction rather than a fired
projectile with fixed -trajectory

ÅBased on foundational assumption
ſUntapped system resources to be harvested

ſMore computational work will yield reduced time and lower power

ſOpportunities for enhanced efficiencies discovered only in flight

ſNew methods of control to deliver superior scalability

ÅñUndiscovered Countryò ï adding a dimension of systematics
ſAdding a new component to the system stack

ſPath-finding through the new trade -off space

Cetraro Workshop 2011

14

6/28/2011

HPX Runtime System Design

ÅCurrent version of HPX provides the following
infrastructure on conventional systems as
defined by the ParalleX execution model

ſActive Global Address Space (AGAS)

ſParalleX Threads and ParalleX Thread
Management

ſParcel Transport and Parcel Management

ſLocal Control Objects (LCOs)

Cetraro Workshop 2011 6/28/2011

15

HPX Runtime System Design

ÅCurrent version of HPX provides the following
infrastructure on conventional systems as
defined by the ParalleX execution model

ſActive Global Address Space (AGAS)

ſParalleX Threads and ParalleX Thread
Management

ſParcel Transport and Parcel Management

ſLocal Control Objects (LCOs)

Cetraro Workshop 2011 6/28/2011

16

Main Runtime System Tasks

ÅManage parallel execution for application Starvation
ſDelineating parallelism , runtime adaptive management of parallelism
ſSynchronizing parallel tasks
ſThread scheduling, static and dynamic load balancing

ÅMitigate latencies for application Latencies
ſLatency hiding through overlap of computation and communication
ſLatency avoidance through locality management
ſDynamic copy semantic support

ÅReduce overhead for application Overheads
ſSynchronization, scheduling, load balancing, communication, context

switching, memory management, address translation

ÅResolve contention for application Contention
ſAdaptive routing, resource scheduling, load balancing
ſLocalized request buffering for logical resources

17

Cetraro Workshop 2011 6/28/2011

Active Global Address Space

ÅGlobal Address Space throughout the system
ſRemoves dependency on static data distribution
ſEnables dynamic load balancing of application and system data

ÅAGAS assigns global names (identifiers, unstructured 128 bit integers to
all entities managed by HPX.

ÅUnlike PGAS allows mechanisms to resolving global identifiers into
corresponding local virtual addresses (LVA)
ſLVAs comprise ï Locality ID, Type of Entity being referred to and its local

memory address
ſMoving an entity to a different locality updates this mapping.
ſCurrent implementation is based on centralized database storing the

mappings which are accessible over the local area network.
ſLocal caching policies have been implemented to prevent bottlenecks and

minimize the number of required round -trips.

ÅCurrent implementation allows autonomous creation of globally unique
ids in the locality where the entity is initially located and supports
memory pooling of similar objects to minimize overhead

Cetraro Workshop 2011

18

6/28/2011

Thread Management

ÅThread manager is modular and implements a work-queue
based management as specified by PX Execution model

ÅThreads are cooperatively scheduled at user level without
requiring a kernel transition

ÅSpecially designed synchronization primitives such as
semaphores, mutexes etc. allow synchronization of HPX
threads in the same way as conventional threads

ÅThread management currently supports several key modes
ſGlobal Thread Queue

ſLocal Queue (work stealing)

ſLocal Priority Queue (work stealing)

Cetraro Workshop 2011

19

6/28/2011

Parcel Management

ÅAny inter -locality messaging is based on Parcels

ſIn HPX implementation parcels are represented as polymorphic objects

ſAn HPX entity on creating a parcel object sends it to the parcel handler.

ÅThe parcel handler serializes the parcel where all dependent data is
bundled along with the parcel.

Å At the receiving locality the parcel is received using the standard
TCP/IP protocols,

ÅThe action manager de-serializes
the parcel and creates HPX threads
out of the specification

Cetraro Workshop 2011

20

Locality 2Locality 1

Parcel Handler

parcel

object

Action Manager

HPX Threads

put()

Serialized Parcel De-serialized Parcel

6/28/2011

Exemplar LCO: Futures

ÅIn HPX Futures LCO refers to an object that acts as a proxy for the
result that is initially not known.

ÅWhen a user code invokes a future (using future.get()) the thread
can do one of 2 activities
ſIf the remote data /arguments are

available then the future.get()
operation fetches the data and the
execution of the thread continues

ſIf the remote data is NOT available
the thread may continue until it
requires the actual value; then the
thread suspends allowing other
threads to continue execution. The
original thread re -activates as soon
as the data data dependency is
resolved

6/28/2011 Cetraro Workshop 2011

21

Locality 1

Locality 2

future.get()
suspend thread 1

reactivate thread 1

execute thread 2

Note: Thread 1 is suspended
only if the results from locality 2
are not readily available. If results are
available Tread 1 continues to
complete execution.

Based on HPX ï An exemplar implementation of ParalleX for
conventional systems

Cetraro Workshop 2011

22

6/28/2011

Starvation: Non-uniform Workload

0.000

0.002

0.004

0.006

0.008

0.010

4 5 6 7 8 9 10 11 12

W
a

ve
 A

m
p

lit
u

d
e

Computational Domain (Radius)

AMR Example Mesh Structure

0 LoR

1 LoR

2 LoR

Cetraro Workshop 2011

23

6/28/2011

Starvation: Non-uniform Workload

0.000

0.002

0.004

0.006

0.008

0.010

4 5 6 7 8 9 10 11 12

W
a

ve
 A

m
p

lit
u

d
e

Computational Domain (Radius)

AMR Example Mesh Structure

0 LoR

1 LoR

2 LoR

Cetraro Workshop 2011

24

6/28/2011

Starvation: Non-uniform Workload

Cetraro Workshop 2011

25

6/28/2011

Grain Size: The New Freedom

6/28/2011 Cetraro Workshop 2011

26

