a Scalable Toolkit for an Open Community Supporting Near Realtime High Resolution Coastal Modeling
Project Scope

Computer Science Community
- LGD: LibGeoDecomp, an auto-parallelizing library for computer simulations
- HPX: a next-generation parallel runtime system

Coastal Community
- ADCIRC: a coastal simulation and storm surge model. Used to predict flooding to hurricanes, simulate oil spills, and other applications
- CERA: Coastal Emergency Risks Assessment. Website which presents ADCIRC results in an intuitive, interactive format.

Modeling Community
- DG Methods: discontinuous Galerkin solvers for the shallow water equations

Emergency Management Community
- ASGS: ADCIRC Surge Guidance System, a software system for the automation of ADCIRC simulations.
Our Goal

Build a next-generation ADCIRC code:

- Sustainable
- Extensible
- Scalable
- Flexible
The 4 Horsemen of the Apocalypse: SLOW

Starvation
- Insufficient concurrent work to maintain high utilization of resources

Latencies
- Time-distance delay of remote resource access and services

Overheads
- Work for management of parallel actions and resources on critical path which are not necessary in sequential variant

Waiting for Contention resolution
- Delays due to lack of availability of oversubscribed shared resources
The Challenges

Ways to defeat the four horsemen:

• Use fine grain parallelism to reduce Starvation
• Focus on data dependencies rather than communication
• Latency hiding rather than latency avoiding
• Adaptive locality control vs. static data distribution
General Purpose Runtime System

Allows an application to be parallelized on shared memory, distributed memory, and heterogeneous architectures (GPUs, Intel Xeon Phi coprocessor)

Solidly based on a theoretical foundation - ParalleX
- A general purpose runtime system for applications of any scale
 - http://stellar.cct.lsu.edu/
 - https://github.com/STEllAR-GROUP/hpx/

Exposes an uniform, standards-oriented API for ease of programming parallel and distributed applications.
- Enables to write fully asynchronous code using hundreds of millions of threads.
- Provides unified syntax and semantics for local and remote operations.

Enables writing applications which outperform and out-scale existing ones

Published under Boost license and has an open, active, and thriving developer community.
Software Stack:

ADCIRC Physics Modules

Application Code

LibGeoDecomp
Self-Adapting Stencil Codes for the Grid

HPX

Input/Output
• Library for Geometry Decomposition codes
• Auto-parallelization for computer simulations
• Developed since 2006 by Andreas Schaefer @ FAU Erlangen
• Open Source development
• Library written in C++, supports custom kernels in C, C++, FORTRAN
• Design Goals:
 • Separate Domain Science from Performance Engineering
 • Support Legacy Codes
 • Scalable, Portable, Efficient
LGD Building Blocks

User Defines:
• Initializer (Initial Configuration and Input, Mesh, etc.)
• Cell Update (Kernel)

Library Provides:
• Simulator (Handles spatial and temporal loops)
• Writer (Output)
• Steerer (Input)
Current Work

Developing proxy application to simulate workload and communication patterns

`gameoflife_adcirc`:

- Uses decomposed ADCIRC computational mesh
- Simple “game of life” kernel implemented in FORTRAN
- Application code runs on top of LibGeoDecomp which uses HPX for parallelization
class ADCIRCInitializer : public SimpleInitializer<ContainerCellType>
{
 /*
 Read in fort.18, fort.80, fort.14 files
 Construct ADCIRC mesh and connectivity information
 Initialize Grid
 */
}

void DomainCell::update(const NEIGHBORHOOD& hood, int nanoStep)
{
 //Call FORTRAN subroutine
 kernel_
 (numnodes,
 alive,
 numneighbors,
 neighbors
);
}

SUBROUTINE KERNEL(N, ALIVE, NUMNEIGHBORS, NEIGHBORS)
! LOOP OVER NODES
DO I=1,N
 NEW_ALIVE(I)=0
 IF(ALIVE(I).eq.1) THEN
 NEW_ALIVE(I)=0
 ELSE
 SUM=0
 DO J=1,NUMNEIGHBORS(I)
 SUM=SUM+ALIVE(NEIGHBORS(J,I))
 ENDDO
 IF(SUM.gt.0) THEN
 NEW_ALIVE(I)=1
 ENDIF
 ENDIF
ENDDO
END SUBROUTINE KERNEL
CERA Web Interface

Model output:
- water height (storm surge)
- water inundation above ground
- wind speed
- significant wave height
- relative peak wave
ADCIRC node attributes

Overlay features:
- barriers & levees
- shoreline
- rainfall data (radar, real-time stations)
- real-time water stations
- hurricane track info
Approach

• Results from ADCIRC/LGD/HPX must match ADCIRC/MPI results exactly
• Current ADCIRC/MPI source code left (mostly) intact
• Development of ADCIRC/MPI will continue
• Physics kernels automatically pulled from ADCIRC/MPI source code
• Frequent automatic testing
Our Collaborators

• Joannes Westerink (University of Notre Dame)
• Rick Luettich (University of North Carolina)
• Clint Dawson (University of Texas at Austin)
• Robert Twilley (LSU, Louisiana Sea Grant)
• Jason Fleming (Seahorse Coastal Consulting)
• Hartmut Kaiser (Louisiana State University, STE||AR Group)

Supported by: NSF SI2-SSI: Collaborative Research
STORM PROJECT SUMMARY

ADCIRC is a multi-scale, multi-physics coastal circulation model that is widely used in the coastal modeling community today. This model recreates the effects of winds, tides, waves, and currents on large bodies of water and is therefore a useful tool to predict the effects of large storms approaching the coast. ADCIRC has been under development for over two decades and has achieved good scalability and performance through the years by fine tuning it to the best available High Performance Computing strategies of the time (e.g., vectorization, MPI-based parallelization). However, demands for use on larger and more physically complex problems, new computing