
XPRESS Interfaces Meeting
January 23, 2014

 Adrian Serio, Alex Duchene, Hartmut Kaiser, Steve Brandt, Ezra Kissel, Thomas Sterling, Kevin

Huck, Allan Porterfeild, Ben Martin, Kevin Bohan, Maciej Brodowicz, Dylan Stark, Ron Brightwell,
Martin Swany, Abhishek Kulkarni, Bryce Lelbach, Jeremy Kemp

 Welcome: Hartmut Kaiser
o This is the starting point of the rest of the project
o Goals

 Structure for HPX
 Boundaries
 Interfaces
 Functionalities for domains
 Assign responsibilities

o Modules
 Parcel Subsystem
 AGAAS
 Threading Subsystem
 LCOs

o Boundaries
 Applications (XPI)
 Measurement (APEX)
 OS (RIOS)

 Charter: Thomas Sterling
o Imperative to work together as one team
o 2014 will be a pivotal year in American exascale work
o We are in a Metastable state

 Could fail or succeed
o We need to come away in the next few days with the knowledge of how you and your

team will coordinate with others to reach our goal
 Goal: Build XPRESS HPX

o We need to come away with the interfaces identified, categories defined, and we need a
plan to integrate our projects

o Rules of engagement
 Needs to be a working workshop

 Ron Brightwell
o XPRESS’s success will depend on this meeting

 Allan P- It would be nice to have documentation of the interface of the Parcel/LCO interface
which is available for the group even though it will be an internal interface

 Runtime Architecture
o Hartmut

 Description of software stack

 XPI (IU/LSU)

 HPX
o LCOS (IU)
o Threads (LSU)
o Parcels (IU)

o AGAS (TRON)

 RIOS (SNL)

 APEX (OU)

 RCR (RENCI)
o AGAS

 We don’t have a solid structure yet
 Assume for now PGAS
 Hartmut: that is dangerous

 Agreed
o Migrating threads

 Hartmut: Do we want to do that
 Thomas: We need to have it for consistency
 Allan: We will have to have an AGAS to do this

o Threading
 Who is doing the scheduling, OS or runtime

o Do threads have stack?
o Terminating Threads

 We have to have a method to kill threads or runtimes
 Do we have a distinction between OS and user level threads?
 LXK is not aware of other nodes

o LCOs
 Remove “Wait on Remote LCO” line
 Wake a remote LCO
 Trigger remotely wait locally
 Linked pairs of LCOs?
 We need to clarify what we mean by LCO

o Questions from discussion
 Changing Scheduler behavior
 Terminating remote threads
 Thread migration
 Interaction with GAS
 Performance monitoring
 OS interface

 Upcalls

 Performance events

 Power events

 RIOS: Dylan
o Parts of LXK

 Memory
 NIC
 Thread

 How will thread systems interact?

 Does runtime system maintain ownership of lightweight threads?

 How can OS and the thread package interact?

 Hartmut: OS needs to be aware of runtime system
 Instrumentation control

 Allan- talked to Kevin about this

 Job Management
 Topology

 Allan:
o APEX should get most of its information from RCR
o Asynchronous methods of RCR receiving information
o Should RCR replace HPX performance counters?
o Kevin: APEX is an interface between HPX and TAU for data
o RCR is bound to OS and lives forever, APEX is bound to runtime
o RCR is global state

 Is it knowledgeable about other nodes
o Should RCR be remote callable

 Break

 Thomas Sterling: We need to put names on these red lines

 Threads and Parcels: Kevin and Hartmut
o Threading subsystem

 Two distinct blocks of functionality

 Managing single threads
o Create new ones
o Cancel threads

 OS might want a gun
 Do we want a cancellable LCO for fault tolerance

o Change thread state
 Define number of thread states (IU has a document)

 Different names: Suspended, Yield, pending
o LSU Suspend= IU Pending

o Provide means of synchronization

 Schedule threads
o Scheduling single threads and/or groups of threads

 Create now and run now? Vs create now run later?
o Scheduling policies

 Different schedulers (LIFO,FIFO, work stealing, etc.)
 Which cores to use
 Enforce limits for how many threads can be created

o Parcels->Threads interface
 Create a new thread

 Destination

 Function pointer (Function ID)

 Arguments
 Cancel threads
 Create Direct Action
 Kill threads

o Do we need to define more types of parcels
 Thomas: There are use cases that we would want different types of parcels
 Hartmut: All a parcel does is spawn a thread
 Different states
 Parcels can have attributes which allow us to have optimization purposes
 Dylan: Why not give more access to thread API

 Thread interface: Send Parcel
 Parcel Interface: Parcels create thread
 Hartmut: We can add functionality

 Lunch

 Dinner will be at Chimes

 During lunch a realization about APEX was

 When thinking about Optimizations; if the optimization needs information across boundaries we
need to talk about it

 LCO/Threads interface
o Commonly used LCOs: Dataflows and futures
o Thread->LCO interfaces

 Thread changes the state of an LCO
o LCO->Thread

 LCO invokes thread
o LSU HPX LCOs

 Creates a new thread or resumes a suspended thread
 Threads and parcels are semantically the same

 If the task is local it is packaged as thread

 If the task is remote it is packages as parcel
o IU LCOs

 Create and initialize
 Utility functions for types
 Set

 Set state

 Set value

 Set state/value
 Query

 Async state

 Sync state

 Value
 Helpers
 Destroy
 Predicates

o Should we be able to cancel a future?
 Future is not an operation but a handle

 Take this conversation offline
o Should we have hints on how to schedule threads?

 ????
o LCO->Threads

 Create a thread to ?????
o Suspended threads are LCOs
o A depleted thread is not managed by the runtime system

 APEX/RCR
o Over lunch we realized that APEX could be integrated with HPX
o RCR would be incorporated with RIOS
o HPX->APEX

 Timer start/stop

 Sample counter
 Init
 Finalization
 Phase start/stop
 reset

o APEX->RIOS
 Needs a way to communicate
 What happens if we are trying to get data after an HPX instance is over if we are

reliant on parcels
 Semantics of the policy engine needs to be sketched out

o APEX->RCR
 Write to a common memory space
 Should it use parcels?

 If I am a compiler do I want parcels?
o APEX writes software data to RCR and RIOS writes hardware data to RCR

 APEX last for an instance of HPX
 RCR is persistent over multiple instances of HPX

o RCR does not make policies

 Break

 ROIS
o Where we are at
o Portals 4, LXK (Kitten)
o Don’t have APIs yet
o Want to create a list of requirements

 Have use cases
o Parts of RIOS

 Threads

 What are the differences between the HPX threads and the OS threads
 Schedulers

 In HPX allows for a number of schedulers to be used

 These schedulers are directed by a resource manager
o Resource manager assigns the scheduler resources

 How would the resource manager handle multiple instances of HPX on
one core?

 Current implementation of HPX uses dedicated OS threads for timers, IO, etc.
o Hartmut: We should try to avoid having two scheduler scheduling tasks

 Give the OS the ability to do different policies based on the runtime
requirements

o What is shared between OS and runtime system
 Task descriptor?

 If there is shared functionality that systems on top of LXK use wouldn’t
that make things simpler?

 HPX4 is not supposed to be restricted to LXK and LXK cannot be
restricted to HPX4

 Middle ground: could LXK implement useful things such as:
o growable stacks
o shared queues

 Should users be able to override an OS scheduler?

 There needs to be a negotiation protocol between the OS and the RTS
o The RTS can request resources (it knows what it needs)
o The OS can grant request or can tell RTS to wait

 Ron: There is a concept of an “enclave” which is dedicated RTS
hardware resources

 LCOs

 Bettor Memory allocator
 AGAS

 Restricted page tables

 Hartmut: Migration will implemented by summer
o We need to talk about networking

 Portals4
 LXK to LXK communication
 IO

o Allen: we should focus on an introspective runtime
 Tron: OS will have to have to have some introspection
 Allen: Yes but most should be in runtime

 RIOS is still very fluid

 Tron: Threads should follow data

 Bryce: LSU is concerned about being cornered by the OS

 Tron: RTS can’t know what the work load is

 Tron: Lets Discuss integration tomorrow in one group
o Please think about the next steps to do and miles stones to think about

 Think about what you need from other intuitions

 We will convene tomorrow at 9:00am

