
Xpress Performance Workshop

RCRblackboard

Allan Porterfield
RENCI, UNC-Chapel Hill

Rob Fowler
RENCI, UNC-Chapel Hill

Why RCRToolkit?
• Thread performance on multi-core systems limited

by what the other threads on the system are
simultaneously doing.
– L3 cache contention

– Memory bandwidth limitations – includes contention in
DIMMs

– Internal bus contention

• RENCI has been working on Resource Centric
Reflection toolkit to expose contention to
programmer and runtime.
– Performance Tuning Tools (RCRoolkit)

– Runtime Scheduler (MAESTRO scheduler in Qthreads)

2

Pieces of RCRToolkit

• Infrastructure

– RCRblackboard – database to store dynamic information about
system

– RCRdaemon - allow user access to hardware performance
counters

– RCRlogger – allow post-execution review of counters

– RCRviewer – simple GUI to view results

• Clients
– EnergyStat API – allow user to see energy application required

– Qthread scheduler – allow runtime access to dynamic
information

– HPCToolkit – Modified to query blackboard

Autotuning and Runtime Adaption for Power

Mangement
3

4
System 0 Rack 0 Node 0

Socket 0

Core 0

Core 1

Core 2

Core N

Shared
Caches

Shared
Resource

Node 1

Shared
NICs

IPMI /
RAS

Rack 1

RCR Daemon

RCR Blackboard
RCR

Viewer
RCR

Logger

Jobs
(RCR API / Qthreads)

Other Performance
Tools (HPCToolkit etc.) /

Power Control Tools

App 1
App 2

App 3

RCRToolkit

Libra –
like

output

Net-
work

RCRblackboard (1)

• Publisher/Reader Semantics

– Each section 1 writer multiple readers – eliminate

synchronization

– No reader checkin – writer does not produce events

for readers

– Self-describing data format that writer/readers agree

on

• Uses shared memory regions

– One per writer

• currently only one writer – it uses /dev/shm/bbFile

Autotuning and Runtime Adaption for Power

Mangement
5

RCRblackboard (2)

• Google Protobuf
– Self-describing, compact

– Seems designed for network and stores in a compressed
format
• Compression on every write is very expensive for us

• Future – write store function that doesn’t compress

– Updates become simple writes / no compression

– Reads are simple reads / no expansion
– Will need to define mechanism to prevent inconsistent data being read

(when reading multiple values – 2 version numbers?)

– Hierarchical based on classes from protoc
• On our 2 socket SandyBridge system

– 8 sets of core counters

– 2 sets of socket counters

– System-wide counters

Autotuning and Runtime Adaption for Power

Mangement
6

RCRblackboard (3) -- partial protoc def

from protobuf/blackboard.proto

Message RCRBlackboard {

optional RCRBlcakboarMetadata bbMetadata = 1

repeated RCRNode node = 2

repeated RCRSocket socket = 3

repeated RCRCore core = 4

repeated RCRSocketMeter socketMeter = 5

repeated RCRCoreMeter coreMeter = 6

}

Autotuning and Runtime Adaption for Power

Mangement
7

RCRdaemon
• Write hardware counters into RCRblackboard

– Chip-wide – energy/L3 cache/Memory Controller

– Core-specific – std set (cycle cnt/floating pt/etc.)

• Several Architecture specific versions
– Intel SandyBridge (currently used)

– Intel Nahalem (compiles – as of Monday / untested – doesn’t crash
immediately)

– AMD Opteron (used in the past and probably victim of bit rot)

• Needs to run at kernel protection level to access global
counters
– Configuration dependent (energy counter requires it / as do some L3

counters)

• Writes /dev/shm/bbFile using protobuf interface
– Current overhead ~16% of one core

– Big savings by eliminating compression (one per write)

Autotuning and Runtime Adaption for Power

Mangement
8

RCRlogger

• Reads RCRblackboard periodically and writes
results to stdout

– Dumps all active counters on single line

– Identified by socket/core number and counter
number

– Up to ~12000 times a sec on Intel SandyBridge
(2.7GHz)
• Faster than many of the counters update in RCRblackboard

(energy ~1000)

– Startup option to set frequency (-i #in microsecs)

– -d turns into daemon (no stdout – not sure why)

– No –f output to filename (should be added)

Autotuning and Runtime Adaption for Power

Mangement
9

10

RCRviewer

EnergyStat API
• Provides a pair of calls (in C) to capture energy usage during a

program

– extern “C” int energyDaemonInit(int wait);

– extern “C” void energyDaemonTerm();

• Produces these lines of output

– (init call) Starting doEnergyWork

– (term call) Application (Energy) – Time 8.109619 Total energy consumed 1072.728810 Ave. Power

Level 132.278572 Final Temperature socket 1 – 53.000000 socket 2 – 46.000000

• Multiple calls to energyDaemonTerm allowed

– Each prints energy since previous call

• Initiates low-overhead daemon

– Wakes up every wait nanoseconds and reads counters (32 bit – protects
from overflow)

– Only works on Intel SandyBridge (and probably IvyBridge) processor

Autotuning and Runtime Adaption for Power

Mangement
11

Sherwood Scheduler

• Locality-aware scheduler for Qthreads

– Work sharing between cores sharing L3 cache

– Work stealing between sockets sharing an address space

• Modified to reduce energy consumption

– Reads energy and memory concurrency from

RCRblackboard

– If both high reduces the number of active threads

• Duty-cycle modification to greatly reduce power requirements of idle

threads

– Saved ~3% power for benchmarks/Mini-Apps where it

applied

• Micro-algorithm benchmarks(UNC), BOTS suite(Barcelona), and

LULESH (LLNL mini-app)
Autotuning and Runtime Adaption for Power

Mangement
12

13

HPCToolkit hot-wired with RCRToolkit

