Xpress Performance Workshop
RCRDblackboard

Allan Porterfield
RENCI, UNC-Chapel Hill

Rob Fowler
RENCI, UNC-Chapel Hill

\
= | ¢ rendl

RESEARCH . ENGAGEMENT . INNOVATION

Why RCRToolkit?

* Thread performance on multi-core systems limited
by what the other threads on the system are
simultaneously doing.

— L3 cache contention

— Memory bandwidth limitations — includes contention in
DIMMSs

— Internal bus contention

 RENCI has been working on Resource Centric
Reflection toolkit to expose contention to
programmer and runtime.

— Performance Tuning Tools (RCRoolkit)
— Runtime Scheduler (MAESTRO scheduler in Qthreads)

N\
rencl

Pieces of RCRToolkit

e |nfrastructure

— RCRDblackboard - database to store dynamic information about
system

— RCRdaemon - allow user access to hardware performance
counters

— RCRIogger - allow post-execution review of counters

— RCRVviewer - simple GUI to view results

 Clients

— EnergyStat API - allow user to see energy application required

— Qthread scheduler - allow runtime access to dynamic
Information

— NP CToolkit — Modified to query blackboard

rencl

App 3

App 2
App 1]_, Jobs

(RCR API / Qthreads)

Other Performance
Tools (HPCToolkit etc.) /
Power Control Tools

_ A A
RCRToolkit ‘l' l'
SR SEEER
< RCR Blackboard —>
RCR RCR
Logger T 1‘ t Viewer
() () [)
./ l I _ Y,
[[
| . |
(b_\ Core 0
Libra — d
like S::la;::id Core 1l zgires
output
Core 2 Sh d
Net- "::IS/ 0 Res:::xerce
\ work || || Core N s
renCI Rack1 Nodel [Socket 0 —
System 0 Rack 0 Node 0

RCRblackboard (1)

 Publisher/Reader Semantics

— Each section 1 writer multiple readers — eliminate
synchronization

— No reader checkin — writer does not produce events
for readers

— Self-describing data format that writer/readers agree
on
* Uses shared memory regions

— One per writer
 currently only one writer — it uses /dev/shm/bbFile

rel l(I Autotuning and Runtime Adaption for Power 5

Mangement

RCRblackboard (2

* Google Protobuf
— Self-describing, compact

— Seems designed for network and stores in a compressed
format
« Compression on every write is very expensive for us
» Future — write store function that doesn’t compress
— Updates become simple writes / no compression

— Reads are simple reads / no expansion

— Will need to define mechanism to prevent inconsistent data being read
(when reading multiple values — 2 version numbers?)

— Hierarchical based on classes from protoc

» On our 2 socket SandyBridge system
— 8 sets of core counters
— 2 sets of socket counters
— System-wide counters

N\
rencl

RCRblackboard (3) -- partial protoc def

from protobuf/blackboard.proto

Message RCRBlackboard {
optional RCRBIcakboarMetadata bbMetadata = 1
repeated RCRNode node = 2
repeated RCRSocket socket = 3
repeated RCRCore core =4
repeated RCRSocketMeter socketMeter = 5
repeated RCRCoreMeter coreMeter = 6

rel I(I Autotuning and Runtime Adaption for Power E

Mangement

RCRdaemon

« Write hardware counters into RCRblackboard
— Chip-wide — energy/L3 cache/Memory Controller
— Core-specific — std set (cycle cnt/floating pt/etc.)

« Several Architecture specific versions
— Intel SandyBridge (currently used)

— Intel Nahalem (compiles — as of Monday / untested — doesn’t crash
immediately)

— AMD Opteron (used in the past and probably victim of bit rot)
* Needs to run at kernel protection level to access global

counters

— Configuration dependent (energy counter requires it / as do some L3
counters)

« Writes /dev/shm/bbFile using protobuf interface
— Current overhead ~16% of one core
— ng savings by eliminating compression (one per write)

rel I(I Autotuning and Runtime Adaption for Power

Mangement

RCRIlogger

 Reads RCRblackboard periodically and writes
results to stdout
— Dumps all active counters on single line

— |dentified by socket/core number and counter
number

— Up to ~12000 times a sec on Intel SandyBridge
(2.7GHz)

 Faster than many of the counters update in RCRblackboard
(energy ~1000)

— Startup option to set frequency (-1 #in microsecs)
— -d turns into daemon (no stdout — not sure why)
— I@ —f output to filename (should be added)

rel l(l Autotuning and Runtime Adaption for Power

Mangement

9

IMT Occupancy 0 - Socket 0

RCRviewer

MT Occupancy 0 - Socket 0

IMT Occupancy 0 - Socket 0

| =t [P J
__-'I _'-J !"\-' !_-'I - 1]
= L = LN = Ln

IMT Average Occupancy

J
LA

10.

[]

o Other O Seguential ® Parallel & Notes

EnergyStat API

Provides a pair of calls (in C) to capture energy usage during a
program

— extern “C” int energyDaemoninit(int wait);

— extern “C” void energyDaemonTerm();

* Produces these lines of output

— (init call) starting doEnergywork

— (term caII) Application (Energy) — Time 8.109619 Total energy consumed 1072.728810 Ave. Power
Level 132.278572 Final Temperature socket 1 — 53.000000 socket 2 — 46.000000

« Multiple calls to energyDaemonTerm allowed
— Each prints energy since previous call

* |nitiates low-overhead daemon

— Wakes up every wait nanoseconds and reads counters (32 bit — protects
from overflow)

— Only works on Intel SandyBridge (and probably IvyBridge) processor

rel I< I Autotuning and Runtime Adaption for Power 11

Mangement

Sherwood Scheduler

 Locality-aware scheduler for Qthreads
— Work sharing between cores sharing L3 cache
— Work stealing between sockets sharing an address space

« Modified to reduce energy consumption

— Reads energy and memory concurrency from
RCRDblackboard

— If both high reduces the number of active threads
» Duty-cycle modification to greatly reduce power requirements of idle
threads
— Saved ~3% power for benchmarks/Mini-Apps where it
applied
» Micro-algorithm benchmarks(UNC), BOTS suite(Barcelona), and
LULESH (LLNL mini-app)

rel l(l Autotuning and Runtime Adaption for Power 12

Mangement

HPCToolkit hot-wired with RCRToolkit

hpcviewer: fit_open_mp

"% qthread.c "% gloop.c "% fft_open_mp.rose &3 =0

_p_jc = (p_index_ * *m3j2);
—p_jd = _p_jc;
—pwiw[@] = *w)[(_p_jw * 2} + 0];
—pwiw[1] = *w)[C_p_jw * 2} + 17;
if *sgn < 0.0) {

—p_wiw[1] = -_p_wiw[1];

199 for (_p_k = @; _p_k = *mj; _p_k++) {
19 C*a[Cp_je + _p_k) * 2) + @] = ((*ad[({_p_Jja + _p_k} * 2} + @]
192 C*a)[Cp_je + _p_k) * 23 + 1] = (C *ad[C{_p_ja + _p_k} * 23 + 1] + C *BILCC_p_Jb + _p_k) * 2) + 11);
193 _p_ambr = C(*a)[((_p_Jja + _p_k) * 2) + @] - (*bI[{(_p_jb + _p_k) * 2) + @1);

—p_ambu = ({ *a)[CC_p_ja + _p_k) * 2) + 11 - C *bI[(C_p_ib + _p_k) * 2) + 11);

C *d)[CCp_jd + _p_k) * 2) + @] = (C_p_wjw[@] * _p_ambr} - (_p_wiw[1] * _p_ambu));

CHIICCpdd + _pk) * 2) + 1] = (Cpwiw[1] * _p_ambr) + (_p_wjw[@] * _p_ambul};

C *BI[CCp_ib + _p_k} * 2) + @1);

-+ +

}
198}
9 }
2o ztﬂt PAPLTOT_CYC:Sum (h w PAP_LZ_TCM:Sum {I) RCR-PAPI_LZ2_TCM:Sum (1) Contention Percentage
ol 1.37e+12 100 % 2.6%9e+09 100 % 1l.46e+09 100 % 5.43e+01
505 int *nd = Cint *J((Cstruct QUT__Z__15Z27___daota *)__out_argv) -» OUT__Z__15/77___daota::ni_p); a
% Calling Context View "\k Callers View T—;_ Flat View =0
i |6f(><]||m A A
Scope PAPI_TOT_CYC:Sum () PAPI_L2_TCM:Sum (I} RCR-PAPI_LZ_TCM:Sum (1) Contention Percentage
Experiment Aaaregate Metrics 1.37e+12 100 % 2.69e+09 100 & 1.46e+09 100 & 5.43e+01
monitor main —TTETTT IS T Z6eTUy 46.5% 3.508T08 Z8.0U% Z.78
athread wrapper 4.91e+11 35.8% 1.25e+09 46.5% 1.06e+09 72.6% B.48e+01
Eraloop step wrapper 4.90e+11 35.7% 1.23e+09 45.7% 1.04e+09 71.2% B.46e+01
EBOUT 1 1527 4.71le+11 34.3% 1.22e+09 45.4% 1.04e+09 71.2% B.52e+01
lgoo.at fft _onen mn roce- 470 Abfalll 39 0% lo22al00 A= A% l0d4elng 71 9% 8. 52a.101
loop at fft open mp.rose: 490 4,57e+11 33.3% 1.20e+09 44.6% 1.02e+09 69.9% 8.503+Ol]
= T ODE . T05E, 260 ST IeT0Y U.a% '
inlined from fft open mp.rose: 454 3.15e+09 0.2% 2.00e+07 0.7% 2.00e+07 1.4% 1.00e+02
fft open mp.rose: 487 7.74e+08 0.1%
fft open mp.rose: 479 3.58e+08 0.0%
fft open mp.rose: 485 3.13e+08 0.0%
fft open mp.rose: 488 3.60e+07 0.0%
EXOMP loop default 5.37e+09 0.4%
Eﬁl loop at fft open mp.rose: 490 4.57e+11 33.3% 1.20e+09 44.6% 1.02e+09 69.9% 8.50e401
B OUT 2 1627 2. RimtN0 N 4%

321Mof 513M |

