Open-X Model

Aside: What’s the plan for the Prime Medium?

Apex + RCRToolkit

XPRESS project meeting @LSU, Feb. 6-8, 2013
APEX Overview

APEX

- Integrated first and third person model
- No pre-defined context (RCR “state space”)
- Directly observed layers reported to RCR Blackboard
- Indirectly observed layers compared to thresholds
 - Violations “trigger” placement of action request in RCRBb
- Threshold processing dynamically controllable
- Distributed aggregation of observations
 - Adjustable resolution based on thresholds
APEX Performance Model

- Event driven model - “Observation with context”

- Event types
 - Instrumented measurement (explicit)
 - code insertion, interface wrappers, …
 - Observed value (counters)
 - Bytes read/written/transfered, thread state, …
 - Generic state transition
 - Program samples (sampling of PC)

- Threshold violations trigger an event in event queue
APEX: monitoring and writing to RCR

APEX:
- “broadcasts” performance state
- monitors performance state
- “triggers” an action
APEX Performance Events

APEX:
- “broadcasts” performance state
- monitors performance state
- “triggers” an action
APEX Performance Events

APEX:
- “broadcasts” performance state
- monitors performance state
- “triggers” an action
APEX Performance Events

APEX:
- “broadcasts” performance state
- monitors performance state
- “triggers” an action
APEX and RCRToolkit

- APEX RCRToolkit client interface
- Any layer of the stack can examine data from other layers
- All layers know about anomalous states in other layers
 - OS layer knows about problems in the hardware
 - Contention, latency, failure, power drain…
 - Runtime layer knows about problems in the OS layer
 - Contention, latency, deadlock…
 - DSL layer knows about problems in the Runtime
 - Starvation, latency, overhead, contention…
- Apex provides interaction with RCRToolkit, decision logic for reporting anomalies
 - Report anomalies relevant to current layer
APEX profiler / logger / timeline generator

- Macroscopic view of performance
- Post-processed metrics (IPC, FLOPS, idle thread count, etc)
- Usual statistical suspects (mean, stddev)
- Mode(s), min(s), max(s) also include full context (where did it happen?)

Best X was …

Worst X was …
APEX requirements

- Low overhead
- Reconfigurable at runtime
 - Change counter groups (HPX?)
 - Adjust resolution
 - Enable / disable observations (filtering, throttling)
- Application of performance thresholds to observation
- “Event driven” model with multiple broadcasters / listeners
 - Performance validator
 - RCRToolkit reporter / observer
 - APEX Profiler / logger / timeline generator
APEX concerns

- Event driven model implementation
- Broadcaster / listener complexity?
- Threading complexity (OS threads, HPX threads)
 - Suspended threads
- Lag between observation and RCR context capture (sliding window approach?)
- Processing overhead
- Sample targeting
 - HPX, XPI, DSL, MPI, etc. share a process space
- “Unknown unknowns”
APEX and HPX

- HPX “will track threads, queues, concurrency, remote operations, parcels, and memory management.” HPX can be explicitly instrumented
- Key state changes
- Selected HPX API calls can be wrapped / instrumented
- AGAS performance properties
- Thread management states (idle/busy)
- Local Control Object (LCO) properties
- Parcel Transport properties
- Future synchronization
- “Event” triggers for runtime adjustment/optimization
APEX and Kitten/LXK

- LXK “OS will track system resource assignment, utilization, job contention, and overhead.”
- Apply experience from KTAU research?
- OS Process performance observations
- OS Thread performance observations
- IO, Network, Memory performance observations
- Observe “Event” triggers for runtime adjustment/optimization
APEX and Legacy Codes

- ParalleX, “DSLs and legacy codes will allow language-level performance semantics to be measured.”

- OpenMP, MPI interposition library support
 - PMPI interface
 - OpenMP Collector API, GOMP wrapper

- XPI interface can be wrapped

- Provides “top-down” performance context
APEX and DSL

- ParalleX, “DSLs and legacy codes will allow language-level performance semantics to be measured.”
- DSL compiler instrumentation support
- XPI interface can be wrapped
- Provides “top-down” performance context
Questions going forward

- Distributed APEX/RCRBlackboard
 - Inter-node introspection
 - Adjustable thresholds
 - Adjustable resolution
 - Client interface?

- Distinction between HPX user threads and OS threads

- Support for HPX suspensions, resumptions

- Others…
Challenges

- Design of APEX will enable closed-loop performance optimization for the ParalleX execution model
 - Performance portability through dynamic adaptivity
- Creating (application-level) performance abstractions
 - Defines/constrains what is (of importance) to be observed
 - Represent performance model target for analysis/control
- Building efficient mechanisms for on-the-fly analysis
 - Performance derived metrics (based on context)
 - Asynchronous operation
- Context creation and tracking
- Factors concerning effectiveness
 - Overhead of measurement
 - Cost of analysis
 - Latency of feedback (especially cross-machine)