
Phylanx Kickoff Meeting
August 24, 2017

 Chris Taylor, Kevin Huck, Hartmut Kaiser, Adrian Serio, Steve Brandt, Stefan van Zwam, Rod

Tohid, Alireza Kheirkhahan, Parsa Amini, Bibek Wagle

 Welcome-
o Chris- Department of Defense

 Hartmut’s HPX Presentation-

 Kevin’s APEX Talk
o APEX_TASKGRAPH_OUTPUT

 Task graph conversation
o I want to focus on policies
o Nick’s work

 Find tasks which are blocking

 Hartmut- Let us know if you want your DoD agency needs or desires mention

 Stefan’s Algorithms Talk
o Matroid theory

 Related to linear algebra
 Connectivity

 Connectivity gives you structure

 Tangles
o Algorithmic Consequences-

 Small branch width => thin class of graphs, dynamic programming
 Large branch width => large grid minor => redundant vertex
 These concepts allow us to approach graph problems computationally

 Can help with big data sets
o Image processing

o I study low order structures
 Error-correcting codes

 Asymptotically good codes
 Computational matroid theory

 SageMath
 Chris- You are a target audience

o I was brought in to analyze tiling algorithms
 Spartan system

 Tiling heuristic: greedy (Tile node with most neighbors first)

 The Spartan Problem Tiling (K)
o Input:

 Acyclic expression digraph
 Node groups for each call to an operator
 Cost function on edges

o Problem- minimize cost
 Min-tiling

o Pick an optimal data layout

 Ali’s PXFS Talk
o Smart IO

 Keep data in memory

 Move work to data
 Prefetching

o Components
 HPXIO
 Interposition Library
 Workflow Manager

o File views

 Chris’ Talk
o NSCI

 Nsf.gov/cise/nsci
 Supercomputing is in the national interest

o Cloud Software Stack
 Convinced hardware people to expose the attached hardware

o “Statistical Computing” (Machine Learning)
 Applications-

 Theano

 Keras

 Tensorflow

 Dask
 Uses Acyclic graphs

 “Directed Acyclic Graph Technology”
 High level languages

 Scalable and performant
 I want to be able to write a script which produces a graph that is executed on

the cloud
 NumPy

 More general purpose
o I am not worried about data storage
o My bosses want to use commodity nodes to lower barriers to HPC

 Keeps the domain scientist focused on domain work
 Abstracts the hardware from the implementation

o Why HPX
 Little’s Law

 L=lamba * w

 Arrival wait times

 I think that HPX is doing this
o Fast context switching

 Standards conformant
o Technology Transfer

 This is what differentiates you

 Have acyclic graphs built in

 Built synergistically
o Taking an intro to HPC class

 Talking about acyclic graphs, and critical paths, etc.
o I realized I need a math person

 I think the math will have implications on all other project areas
o I have two users in mind

 High level domain scientist
 Lower level performance optimizer

o Hartmut-
 I see three parts

 High level interface
o Produces a representation of the execution graph

 Optimization

 Execution engine that can read graph representations
o Interpreter

 These parts must be developed together
o Adrian-

 Do we need to think about cloud computing?

 Or can we focus on tightly coupled systems
 Chris- we can ignore the cloud stuff

o Stefan
 Where does the DoD come in?

 NCSI is led by DoD
o Kevin-

 Where do these other tools fail?

 TensorFlow
 Chris- All of the optimizations are baked into the platform

 Lunch

 Project Planning
o What are the goals of the project

 What will we do for the current grant
 What will we do for the future grant

o What are the concrete use cases
o We will write the proposal for the next grant now
o Project Components

 Python component

 Primitives (numpy?)

 Bindings?
 Execution Graph

 Analysis

 Data representation

 Visualization (Sage support)
 Execution Engine

 Interpreter on HPX

 APEX

 Storage
o Rely on Spartan
o What array sizes are we talk about?

 What we are proposing to build?
o Custom NumPy (produces an execution graph)
o Write an execution graph analyzer

 Do this in the next step
o Adapt HPX to take an Execution Graph

 In step one

 Storage
o We will need to have some load store primitives

 Licenses-

 Python 2 or 3?
o We can do 3

 Project Steps
o Minimal Example

 Spartan front-end
 Serialize (pickle)
 Simple execution engine
 Primitives

 I/O

 Trivial ops +/-/*/T

 Map, filter, fold, scan, join_update
o APEX

 Chunking policy
 Python Bindings
 Multi-objective optimization

 HPX interpreter
o Takes the graph and executes
o Magic is that you are only exposing predefined types
o Zahra’s work

 High Level User (Python)

 Low Level User (C++)

 Stefan-
o Approximation algorithm with two tilings and a 0/1 cost function

 Logistics
o Minimal Product

 Algorithm: Logistic Regression
 All one repository, private, STE||AR Organization

 Hartmut- will do the minimal setup

 Timeline
o Year 1:

 Minimal NumPy implementation

 1 and 2 dimensional arrays of doubles
 Low level C++ API
 Serialization
 Approximation Algorithm with 2 tilings and 0/1 cost function
 Primitives

 Including I/O
 Single node
 Chunking
 Python Bindings
 Data Representation
 Applications: Logistic Regression (First), ALS
 Minimal Interpreter

 Buildbot
 Regression Testing
 Performance Regression Test
 Spartan
 CMake

o Year 2:
 Complex Numbers
 3+ Dimensions
 Approximating n-tiling with any cost function
 Minimal IR example
 Accelerators
 Tiled I/O
 Algorithms: NN, BFS, LDA, Logistic Regression (Distributed)
 Parcel Coalescing
 Algorithm Policies
 Critical Path Analysis

o Year 3:
 3+ dimensions
 FPT
 Bi-Level tiling
 Misc. Optimizations (Learning models + RTS Decisions)
 Additional Operations
 Task Cancelation
 Applications: Chelosky, SVD, CG
 Multi-objective opt.

 Break for the Day

