
HPX
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND
DISTRIBUTED APPLICATIONS OF ANY SCALE

The Venture Point
TECHNOLOGY DEMANDS NEW RESPONSE

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
2

Technology Demands new Response

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
3

Technology Demands new Response

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
4

Tianhe-нΩǎ ǇǊƻƧŜŎǘŜŘ ǘƘŜƻǊŜǘƛŎŀƭ peak performance: 54.9 PetaFLOPs

16,000 nodes, ~3,200,000 computing cores (32,000 Intel Ivy Bridge Xeons, 48,000 Xeon Phi Accelerators)

!ƳŘŀƘƭΩǎ [ŀǿ ό{ǘǊƻƴƎ {ŎŀƭƛƴƎύ

S: Speedup

P: Proportion of parallel
code

N: Number of processors

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
5

Ὓ
ρ

ρ ὖ
ὖ
ὔ

Figure courtesy of Wikipedia (http://en.wikipedia.org/wiki/Amdahl's_law)

Starvation
Insufficient concurrent work to maintain high
utilization of resources

Latencies
Time-distance delay of remote resource access and
services

Overheads
Work for management of parallel actions and
resources on critical path which are not necessary
in sequential variant

Waiting for Contention resolution
Delays due to lack of availability of oversubscribed
shared resources

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
6

The 4 Horsemen of the Apocalypse: SLOW

The Challenges
We need to find a usable way to fully parallelize the applications

Goals are
Defeat The Four Horsemen

Provide manageable paradigms for handling parallelism

Expose asynchrony to the programmer without exposing concurrency

aŀƪŜ Řŀǘŀ ŘŜǇŜƴŘŜƴŎƛŜǎ ŜȄǇƭƛŎƛǘΣ ƘƛŘŜ ƴƻǘƛƻƴ ƻŦ ΨǘƘǊŜŀŘΩΣ ΨŎƻƳƳǳƴƛŎŀǘƛƻƴΩΣ ŀƴŘ ΨŘŀǘŀ
ŘƛǎǘǊƛōǳǘƛƻƴΩ

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
7

Runtime Systems
THE NEW DIMENSION

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
8

HPX ςA General Purpose Runtime System
Solidly based on a theoretical foundation - ParalleX

A general purpose runtime system for applications of any scale
http://stellar.cct.lsu.edu/

https://github.com/STEllAR-GROUP/hpx/

Exposes an uniform, standards-oriented API for ease of programming parallel and distributed
applications.

Enables to write fully asynchronous code using hundreds of millions of threads.

Provides unified syntax and semantics for local and remote operations.

Enables writing applications which outperform and out-scale existing ones

Is published under Boost license and has an open, active, and thriving developer community.

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
9

http://stellar.cct.lsu.edu/
https://github.com/STEllAR-GROUP/hpx/

HPX ςA General Purpose Runtime System
Governing principles

Active global address space (AGAS) instead of PGAS

Message driven instead of message passing

Lightweight control objects instead of global barriers

Latency hiding instead of latency avoidance

Adaptive locality control instead of static data distribution

Moving work to data instead of moving data to work

Fine grained parallelism of lightweight threads instead of Communicating Sequential
Processes (CSP/MPI)

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
10

HPX ςThe API
Fully asynchronous

All possibly remote operations are asynchronous by default
ΨCƛǊŜ ϧ ŦƻǊƎŜǘΩ ǎŜƳŀƴǘƛŎǎ όǊŜǎǳƭǘ ƛǎ ƴƻǘ ŀǾŀƛƭŀōƭŜύ

ΨtǳǊŜΩ ŀǎȅƴŎƘǊƻƴƻǳǎ ǎŜƳŀƴǘƛŎǎ όǊŜǎǳƭǘ ƛǎ ŀǾŀƛƭŀōƭŜ Ǿƛŀ hpx::future)

Composition of asynchronous operations (N3634)
hpx::when_all, hpx::when_any, hpx::when_n

hpx::future::then(f)

/ŀƴ ōŜ ǳǎŜŘ ΨǎȅƴŎƘǊƻƴƻǳǎƭȅΩΣ ōǳǘ ŘƻŜǎ ƴƻǘ ōƭƻŎƪ
Thread is suspended while waiting for result

Other useful work is performed transparently

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
11

HPX ςThe API
As close as possible to C++11 standard library, where appropriate, for instance

std::thread Ą hpx::thread

std::mutex Ą hpx::mutex

std::future Ą hpx::future (including N3634)

std::async Ą hpx::async

std::bind Ą hpx::bind

std::function Ą hpx::function

std::tuple Ą hpx::tuple

std::any Ą hpx::any (N3508)

std::cout Ą hpx::cout

etc.

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
12

HPX ςThe API
Fully move enabled (using C++11 move semantics)

hpx::bind, hpx::function, hpx::tuple, hpx::any

Fully type safe remote operation
9ȄǘŜƴŘǎ ǘƘŜ ƴƻǘƛƻƴ ƻŦ ŀ ΨŎŀƭƭŀōƭŜΩ ǘƻ ǊŜƳƻǘŜ ŎŀǎŜ όŀŎǘƛƻƴǎύ

Everything you can do with functions is possible with actions as well

Data types are usable in remote contexts
Can be sent over the wire (hpx::bind, hpx::function, hpx::any)

Can be used with actions (hpx::async, hpx::bind, hpx::function)

Unifies local and remote operation for the application programmer
Object migration to other localities

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
13

The Future
WHERE DO WE GO?

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
14

What is a (the) future
A future is an object representing a result which has not been calculated yet

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
15

Locality 1

Suspend
consumer
thread

Execute
another
thread

Resume
consumer
thread

Locality 2

Execute
Future:

Producer
thread

Future object

Result is being
returned

ÁEnables transparent synchronization with
producer

ÁHides notion of dealing with threads

ÁMakes asynchrony manageable

ÁAllows for composition of several
asynchronous operations

ÁTurns concurrency into parallelism

What is a (the) Future?
Many ways to get hold of a future, simplest way is to use (std) async:

int universal_answer () { return 42; }

void deep_thought ()

{

future< int > promised_answer = async (&universal_answer);

// do other things for 7.5 million years

cout << promised_answer.get () << endl ; // prints 42

}

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
16

HPX ςThe API

R f(p...)
Synchronous

(return R)
Asynchronous

(return future<R>)
Fire & Forget
(return void)

Functions
(direct)

ÆƽÐƛƾ asyncƽÆƗ Ðƛƾ ÁÐÐÌÙƽÆƗ Ðƛƾ

Functions
(lazy)

ÂÉÎÄƽÆƗ ÐƛƾƽƛƾasyncƽÂÉÎÄƽÆƗ ÐƛƾƗ ƛƾÁÐÐÌÙƽÂÉÎÄƽÆƗ ÐƛƾƗ ƛƾ

Actions
(direct)

HPX_ACTION(f, a)
ÁƽÉÄƗ Ðƛƾ

HPX_ACTION(f, a)
asyncƽÁƗ ÉÄƗ Ðƛƾ

HPX_ACTION(f, a)
apply(a, ÉÄƗ Ðƛƾ

Actions
(lazy)

HPX_ACTION(f, a)
bind(a, ÉÄƗ Ðƛƾƽƛƾ

HPX_ACTION(f, a)
async (bind(a, id, ÐƛƾƗ ƛƾ

HPX_ACTION(f, a)
apply(bind(a, id, ÐƛƾƗ ƛƾ

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
17

C++

C++Library

HPX

HPX ςThe API
Additional constructs for composing futures

Sequential composition (attach continuation):
future< decltype (F(future<T>))>

future<T>::then(F f);

Parallel composition:
future<tuple<future<T >, ...>>

when_all (future<T> f, ...);

future<tuple<future<T >, ...>>
when_any(future<T > f, ...);

Dataflow:
future< decltype (F(future<T> f, ...))>

dataflow(F f , future<T> f, ...);

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
18

FuturizationςAn
Example

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
19

Stupidest Way to
Calculate Fibonacci Numbers
Synchronous way:

// watch out: O(2 n)

int f ibonacci_serial (int n)

{

if (n < 2) return n;

return fibonacci_serial (n - 1) + fibonacci_serial (n - 2);

}

cout << fibonacci_serial (10) << endl ; // will print: 55

February 6th, 2014 FUTURIZATION AND IT'S USES 20

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

N
u

m
b

e
r

o
f
C

a
lls

 t
o

 F
ib

(x
)

T
im

e
 [
s]

Fibonacci Number

Serial Calculation of Fibonacci Numbers

Stupidest Way to
Calculate Fibonacci Numbers
Computational complexity is O(2n) ςalright, however

This algorithm is representative for a whole class of applications
Tree based recursive data structures

Adaptive Mesh Refinement ςimportant method for wide range of physics simulations

Game theory

Graph based algorithms
Breadth First Search

Characterized by very tightly coupled datadependencies between calculations
But fork/join semantics make it simple to reason about parallelization

[ŜǘΩǎ ǎǇŀǿƴ ŀ ƴŜǿ ǘƘǊŜŀŘ ŦƻǊ ŜǾŜǊȅ ƻǘƘŜǊ ǎǳō ǘǊŜŜ ƻƴ ŜŀŎƘ ǊŜŎǳǊǎƛƻƴ ƭŜǾŜƭ

February 6th, 2014 FUTURIZATION AND IT'S USES 21

[ŜǘΩǎ tŀǊŀƭƭŜƭƛȊŜ Lǘ ςAdding Real
Asynchrony
Calculate Fibonacci numbers in parallel (1st attempt)

uint64_t fibonacci (uint64_t n)
{

// if we know the answer, we return the value
if (n < 2) return n;

// asynchronously calculate one of the sub - terms
future<uint64_t> f = async (launch:: async , & fibonacci , n - 2);

// synchronously calculate the other sub - term
uint64_t r = fibonacci (n - 1);

// wait for the future and calculate the result
return f.get () + r;

}

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
22

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 5 10 15 20 25 30

T
im

e
 [
s]

Fibonacci Number

Fibonacci (1st Parallel Version)

1 Core

2 Cores

4 Cores

8 Cores

12 Cores

16 Cores

20 Cores

24 Cores

Serial

std::future

[ŜǘΩǎ tŀǊŀƭƭŜƭƛȊŜ Lǘ ςAdding Real
Asynchrony

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
23

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

S
p

e
e

d
u

p

Number of Cores

Fibonacci - Scaling (1st Parallel Version)

Fib(2)

Fib(4)

Fib(8)

Fib(12)

Fib(16)

Fib(20)

Fib(24)

Fib(28)

[ŜǘΩǎ tŀǊŀƭƭŜƭƛȊŜ Lǘ ςAdding Real
Asynchrony
²ƘŀǘΩǎ ǿǊƻƴƎΚ ²ƘƛƭŜ ƛǘ ŘƻŜǎ ǎŎŀƭŜΣ ƛǘ ƛǎ ǎǘƛƭƭ млл ǘƛƳŜǎ ǎƭƻǿŜǊ ǘƘŀƴ ǘƘŜ ǎŜǊƛŀƭ ŜȄŜŎǳǘƛƻƴ

Creates a new future for each invocation of fibonacci() (spawns an HPX thread)
Millions of threads with minimal work each

Overheads of thread management (creation, scheduling, execution, deletion) are much larger than the
amount of useful work

Future overheads: ~1µs (Thread overheads: ~400ns)

Useful work: ~50ns

[ŜǘΩǎ ƛƴǘǊƻŘǳŎŜ ǘƘŜ ƴƻǘƛƻƴ ƻŦ ƎǊŀƴǳƭŀǊƛǘȅ ƻŦ ǿƻǊƪ όƎǊŀƛƴ ǎƛȊŜ ƻŦ ǿƻǊƪύ
The amount of work executed in one thread

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
24

[ŜǘΩǎ tŀǊŀƭƭŜƭƛȊŜ Lǘ ς
Introducing Control of Grain Size

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
25

Parallel calculation, switching to serial execution below given threshold

uint64_t fibonacci (uint64_t n)
{

if (n < 2) return n;
if (n < threshold) return fibonacci_serial (n);

// asynchronously calculate one of the sub - terms
future<uint64_t> f = async (launch:: async , & fibonacci , n - 2);

// synchronously calculate the other sub - term
uint64_t r = fibonacci (n - 1);

// wait for the future and calculate the result
return f.get () + r;

}

[ŜǘΩǎ tŀǊŀƭƭŜƭƛȊŜ Lǘ ς
Introducing Control of Grain Size

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
26

0.1

1

10

100

0 10 20 30 40 50

T
im

e
 [
s]

Serial Threshold

Fibonacci(40), 12 Cores

Serial

Parallelized

Grain Size Control - The New Dimension
Parallelizing code introduces Overheads (SLOW)

Overheads are caused by code which
Is executed in the parallel version only

Lǎ ƻƴ ǘƘŜ ŎǊƛǘƛŎŀƭ ǇŀǘƘ όǿŜ ŎŀƴΩǘ ΨƘƛŘŜΩ ƛǘ ōŜƘƛƴŘ ǳǎŜŦǳƭ ǿƻǊƪύ

Is required for managing the parallel execution
i.e. task queues, synchronization, data exchange

NUMA and core affinities

Controlling not only the amount of resources used but also the granularity of work is an
important factor

Controlling the grain size of work allows finding the sweet-spot between too much overheads
and too little parallelism

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
27

Futurization
Special technique allowing to automatically transform code

Delay direct execution in order to avoid synchronization

¢ǳǊƴǎ ΨǎǘǊŀƛƎƘǘΩ ŎƻŘŜ ƛƴǘƻ ΨfuturizedΩ ŎƻŘŜ

Code no longer calculates results, but generates an execution tree representing the original
algorithm

If the tree is executed it produces the same result as the original code

The execution of the tree is performed with maximum speed, depending only on the data
dependencies of the original code

Simple transformation rules:

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
28

Straight Code FuturizedCode

T func ƽƾ ǅƛǆ future<T> func ƽƾ ǅƛǆ

rvalue : n make_ready_future (n)

T n = func (); future<T> n = func ();

future<T> n = async (&func Ɨ ƛƾƘfuture<future<T> > n = async (&func Ɨ ƛƾƘ

[ŜǘΩǎ tŀǊŀƭƭŜƭƛȊŜ Lǘ ςApply Futurization

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
29

future< >

make_ready_future ()
make_ready_future ()

future< >
future< >

dataflow (
[](future<uint64_t> f1, future<uint64_t> f2) {

return f1.get() + f2.get();
},

,);

Parallel way, futurizealgorithm to remove suspension points

uint64_t fibonacci (uint64_t n)
{

if (n < 2) return n ;
if (n < threshold) return fibonacci_serial (n) ;

future<uint64_t> f = async (launch:: async , & fibonacci , n - 2);
uint64_t r = fibonacci (n - 1);

return

f.get () r
}

[ŜǘΩǎ tŀǊŀƭƭŜƭƛȊŜ Lǘ ςUnwrap Inner Futures

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
30

future<uint64_t > fibonacci (uint64_t n)
{

if (n < 2) return make_ready_future (n);
if (n < threshold) return make_ready_future (fibonacci_serial (n));

future<uint64_t> f = async (launch:: async , & fibonacci , n - 2) .unwrap() ;
future<uint64_t > r = fibonacci (n - 1);

return dataflow(
[](future<uint64_t> f1, future<uint64_t> f2) {

return f1.get() + f2.get();
},
f , r);

}

[ŜǘΩǎ tŀǊŀƭƭŜƭƛȊŜ Lǘ ςUnwrap Argument
Futures

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
31

Guess what? ςThis is 10% faster than straight version!

future<uint64_t > fibonacci (uint64_t n)
{

if (n < 2) return make_ready_future (n);
if (n < threshold) return make_ready_future (fibonacci_serial (n));

future<uint64_t> f = async (launch:: async , & fibonacci , n - 2);
future<uint64_t > r = fibonacci (n - 1);

return dataflow(
unwrapped([](uint64_t r 1, uint64_t r2) {

return r1 + r2;
}) ,
f , r);

}

{ƻ ²ƘŀǘΩǎ ǘƘŜ 5ŜŀƭΚ
Too much parallelism is as bad as is too little

Sweet spot is determined by the Four Horsemen, mainly by contention

Granularity control is crucial
Optimal grain size depends very little on number of used resources

Optimal grain size is determined by the Four Horsemen, mainly by overheads, starvation, and latencies

Even problems with (very) strong data dependencies can benefit from parallelization

Doing more is not always bad
While we added more overheads by futurizingthe code, we still gained performance

This is a result of the complex interplay of starvation, contention and overheads in modern hardware

Avoid explicit suspension as much as possible, prefer continuation style execution flow
Dataflow style programming is key to managing asynchrony

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
32

Recent Results

33May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)

N-Body Code based on LibGeoDecomp

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
34

N-Body Code based on LibGeoDecomp

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
35

Mini-Ghost (SMP)

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
36

Mini-Ghost (distributed runs)

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
37

Conclusions

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
38

Conclusions
Be aware of the Four Horsemen

9ƳōǊŀŎŜ ǇŀǊŀƭƭŜƭƛǎƳΣ ƛǘΩǎ ƘŜǊŜ ǘƻ ǎǘŀȅΣ ŀǾƻƛŘ ŎƻƴŎǳǊǊŜƴŎȅ

Asynchrony is your friend if used correctly

Think in terms of data dependencies, make them explicit

Avoid thinking in terms of threads

Continuation style, dataflow based programming is key for successful parallelization

DǊŀƴǳƭŀǊƛǘȅ ŎƻƴǘǊƻƭ ŀƭƭƻǿǎ ǘƻ ŦƛƴŘ ΨƻǇǘƛƳŀƭΩ ƳƻŘŜ ƻŦ ƻǇŜǊŀǘƛƻƴ

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
39

Where to get HPX
Main repository: https:// github.com/STEllAR-GROUP/hpx/(Boost licensed)

Main website: http://stellar.cct.lsu.edu/

Mailing lists: hpx-users@stellar.cct.lsu.edu, hpx-devel@stellar.cct.lsu.edu

IRC channel: #ste|| ar on freenode

May 21st, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
40

https://github.com/STEllAR-GROUP/hpx/
http://stellar.cct.lsu.edu/
mailto:hpx-users@stellar.cct.lsu.edu
mailto:hpx-devel@stellar.cct.lsu.edu

May 22nd, 2014
HPX - A GENERAL PURPOSE RUNTIME SYSTEM FOR PARALLEL APPLICATIONSOF ANY SCALE

(HTTP://STELLAR.CCT.LSU.EDU/)
41

